Evaluating the Effects of Incomplete Markets on Risk Sharing and Asset Pricing

Peyman Shahidi

Tehran Institute for Advanced Studies (TeIAS)

Student Seminar – Fall 2019

shahidi.peyman96@gmail.com

October 28, 2019

Peyman Shahidi (TeIAS)

Effects of Incomplete Markets

October 28, 2019 0 / 23

Evaluating the Effects of Incomplete Markets on Risk Sharing and Asset Pricing

Authors:

- John C. Heaton Booth School of Business, University of Chicago,
- Deborah J. Lucas Sloan School of Business, Massachusetts Institute of Technology.

Journal of Publication:

• Journal of Political Economy (JPE) – Vol. 104, Issue 3 (June 1996).

Number of Citations so far (as of October 25, 2019):

• 1157

Overview

Introduction

- The Model
 - The Environment
 - Trading Frictions
 - Equilibrium
 - State Variables
- Simulation Results
 - Representative Agent Baselines
 - Frictionless Trading
 - Trading with Transaction Costs
- Conclusion

- A Complete market is a market with two specification:
 Negligible transaction costs and therefore also perfect information
 - Negligible transaction costs, and therefore also perfect information,There is a price for every asset in every possible state of the world.
- In this market, a complete set of possible bets can be constructed with existing assets without friction.
- In contrast, in an *Incomplete* market, the number of securities is less than the number of states.
- In *Incomplete* markets, optimal risk sharing (perfect consumption smoothing) is not feasible.

This paper aims to:

- show the extent to which market incompleteness affects asset prices.
- show how market incompleteness distorts risk sharing.
- introduce the effects through which transaction costs impact the aforementioned parameters.

Overview

- Introduction
- The Model
 - The Environment
 - Trading Frictions
 - Equilibrium
 - State Variables
- Simulation Results
 - Representative Agent Baselines
 - Frictionless Trading
 - Trading with Transaction Costs
- Conclusion

Introduction

• The Model

- The Environment
- Trading Frictions
- Equilibrium
- State Variables
- Simulation Results
 - Representative Agent Baselines
 - Frictionless Trading
 - Trading with Transaction Costs
- Conclusion

< 4[™] >

- Two (classes of) agents with different stochastic income realizations, Y_t^i .
- Agents receive income from investments in stocks and bonds.
- Agents are affected by both aggregate (labor income and dividend) shocks and idiosyncratic (labor income) shocks.
- Agents are not allowed to write contracts contingent on future labor income.

The Economy - Continued

• Each agent's preference over consumption is:

$$U_t^i \equiv \mathbb{E}\{\sum_{\tau=0}^{\infty} \beta^{\tau} \frac{(c_{t+\tau}^i)^{1-\gamma} - 1}{1-\gamma} \mid \mathcal{F}(t)\}, \quad \gamma > 0$$
(1)

• Constraints of the economy (for all t = 0, 1, 2, ...):

$$c_{t}^{i} + p_{t}^{s} s_{t+1}^{i} + p_{t}^{b} b_{t+1}^{i} + \kappa(s_{t+1}^{i}, s_{t}^{i}, \mathbf{Z}_{t}) + \omega(b_{t+1}^{i}, b_{t}^{i}, \mathbf{Z}_{t}) \\ \leq s_{t}^{i}(p_{t}^{s} + d_{t}) + b_{t}^{i} + Y_{t}^{i}, \quad (2)$$

$$s_t^i \ge K_t^s,$$
 (3)

$$b_t^i \ge K_t^b, \tag{4}$$

• Market clearing requires (for all t = 0, 1, 2, ...):

$$b_t^1 + b_t^2 = 0,$$
 (5)
 $s_t^1 + s_t^2 = 1.$ (6)

In the base case model:

• Stock market transaction costs:

$$\kappa(s_{t+1}^{i}, s_{t}^{i}, \mathbf{Z}_{t}) = k_{t}[(s_{t+1}^{i} - s_{t}^{i})p_{t}^{s}]^{2}.$$

Stock market trading cost as a percentage of the value of shares traded is: $k_t |s_{t+1}^i - s_t^i| p_t^s$.

• Bond market transaction costs:

$$\omega(b_{t+1}^i, b_t^i, \mathbf{Z}_t) = \Omega_t \min\{0, b_{t+1}^i p_t^b\}^2.$$

Bond market trading cost as a percentage of the value of bondss traded is: $\frac{\Omega_t | b_{t+1}^i | p_t^b}{2}$.

Equilibrium Conditions

• For all
$$t = 0, 1, 2, ...$$

$$\sum_{i=1,2} [c_t^i + \kappa(s_{t+1}^i, s_t^i, \mathbf{Z}_t) + \omega(b_{t+1}^i, b_t^i, \mathbf{Z}_t)] = d_t + Y_t^1 + Y_t^2, \quad (7)$$

$$\beta \mathbb{E} \{ u'(c_{t+1}^i) [p_{t+1}^s + d_{t+1} - \kappa_2(s_{t+2}^i, s_{t+1}^i, \mathbf{Z}_{t+1})] |\mathcal{F}(t) \}$$

$$= [p_t^s + \kappa_1(s_{t+1}^i, s_t^i, \mathbf{Z}_t)] u'(c_t^i), \qquad (8)$$

$$or: s_t^i = K_t^s, \qquad (8')$$

$$\beta \mathbb{E} \{ u'(c_{t+1}^{i}) [1 - \omega_{2}(b_{t+2}^{i}, b_{t+1}^{i}, \mathbf{Z}_{t+1})] | \mathcal{F}(t) \}$$

$$= [p_{t}^{b} + \omega_{1}(b_{t+1}^{i}, b_{t}^{i}, \mathbf{Z}_{t})] u'(c_{t}^{i}), \qquad (9)$$

$$or : b_{t}^{i} = \mathcal{K}_{t}^{b}. \qquad (9')$$

• At each t, the unknowns are: $c_t^i, p_t^s, p_t^b, s_t^i, b_t^i$.

State Variables of The Model

The exogenous state variables at time t are defined by:

- Aggregate labor income and aggregate dividend income: Y'_t , D^a_t ,
- Total aggregate income: $Y_t^a \equiv Y_t^l + D_t^a$,
- Growth rate in aggregate income: $\gamma^{a}_{t} \equiv Y^{a}_{t}/Y^{a}_{t-1}$,
- Dividend's share in aggregate income: $\delta_t \equiv D^{\rm a}_t/Y^{\rm a}_t,$
- Individual i's labor income as a fraction of aggregate labor income: $\eta^i_t \equiv Y^i_t/Y^a_t.$
- * The state of the economy at time t is given by $[\gamma_t^a, \delta_t, \eta_t^i]'$, estimated using the PSID dataset in 1969-84 and the NIPA dataset in 1947-92.

Calibration of the states is done:

- In a Markov Chain with 8 states estimated by a VAR.
- Using NIPA dataset in 1947-92.
- In base case model and a cyclical distribution case (CDC) model in which imposed individuals' shocks are heteroskedastic.

Overview

- Introduction
- The Model
 - The Environment
 - Trading Frictions
 - Equilibrium
 - State Variables

Simulation Results

- Representative Agent Baselines
- Frictionless Trading
- Trading with Transaction Costs
- Conclusion

< A → < 3

Representative Agent Baselines

• In the baseline model with no frictions (complete markets):

Moment	Data (1)	Aggregate		INDIVIDUAL	
		Base Case (2)	Cyclical Distribution Case (3)	Base Case (4)	Cyclical Distribution Case (5)
Consumption growth:					
Average	.020	.018	.015	.018	.015
Standard deviation	.030	.028	.028	.217	.259
Bond return:					
Average	.008	.080	.077	.055	.041
Standard deviation	.026	.009	.012	.175	.213
Stock return:					
Average	.089	.082	.078	.137	.152
Standard deviation	.173	.029	.028	.375	.441

MOMENTS IMPLIED BY THE COMPLETE MARKETS CASE

Figure 1: Moments of the data versus moments of the complete markets case

• The model explains only the first moment of the data and not the second.

Peyman Shahidi (TeIAS)

• In the frictionless trading model:

MOMENTS IMPLIED BY THE FRICTIONLESS MODEL

Moment	Base Case	Cyclical Distribution Case
Consumption growth:		
Average	.018	.016
Standard deviation	.044	.045
Bond return:		
Average	.077	.073
Standard deviation	.012	.017
Stock return:		
Average	.079	.073
Standard deviation	.032	.030
Bond trades (percent- age of con- sumption):		
Average	.045	.042
Standard deviation	.060	.052
Stock trades (percentage of consumption):		
Average	.131	.146
Standard deviation	.066	.082

Figure 2: Simulated moments of the frictionless trading model

 Introduction of transaction costs in only one of the markets has negligible effects in asset prices.

Peyman Shahidi (TeIAS)

Effects of Incomplete Markets

- The "direct" effect of transaction costs:
 - Agents equate net-of-cost margins in markets. Therefore, with higher cost in the markets, the risk free rate decreases.

$$r^{s} - \kappa = r^{b}$$
: $\kappa \uparrow \Rightarrow r^{b} \downarrow$.

Where r^s , and r^b are stock market and bond market returns, respectively. Note that $r^b =$ lending rate which is the return of lending bonds!

• This phenomena is known as the risk-free-rate puzzle.

• The direct effect can be seen in the base case simulations:

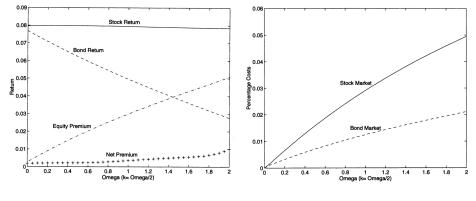


Figure 3: Base case, returns

Figure 4: Base case, trading costs

• The direct effect can be seen in the CDC simulations:

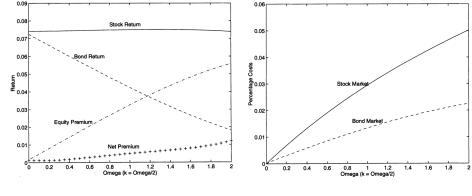


Figure 5: CDC, returns

Figure 6: CDC, trading costs

 Following an increase in transaction costs, average trading (as a percentage of total income) decreases while consumption growth volatility increases.

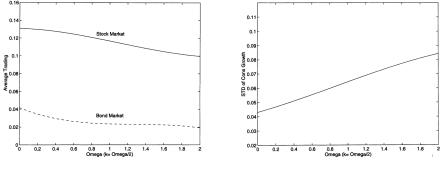


Figure 7: Base case, average trading

Figure 8: Base case, STD of cons. growth

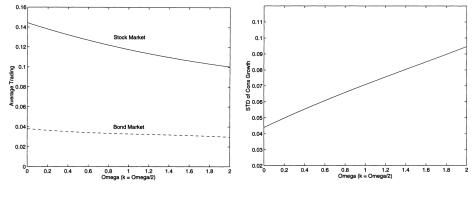


Figure 9: CDC, average trading

Figure 10: CDC, STD of cons. growth

- The "indirect" effect of transaction costs:
 - Agents require more premium for more volatile consumption due to higher transaction costs. This is reflected in the *net* premium.
- Define:

$$r_{t,t+1}^{s,net} \equiv \frac{p_{t+1}^s + d_t t + 1 + 2k_{t+1}(s_{t+2}^i - s_{t+1}^i)(p_{t+1}^s)^2}{p_t^s + 2k_t(s_{t+1}^i - s_t^i)(p_t^s)^2} - 1, \quad (10)$$

$$r_{t,t+1}^{b,net} \equiv \begin{cases} \frac{1}{p_t^b} & b_{t+1}^i \ge 0\\ \frac{1}{p_t^b + s\Omega_t b_{t+1}^i (p_t^b)^2} & b_{t+1} < 0. \end{cases}$$
(11)

Note that (10) and (11) satisfy (8) and (9), respectively.

• The indirect effect is roughly 20% of the equity premium in both cases.

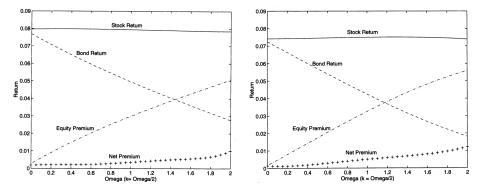


Figure 11: Base case, returns

Figure 12: CDC, returns

Robustness to cost specifications

 Now, assuming the cost function is quadratic for small transactions and becomes linear afterwards:

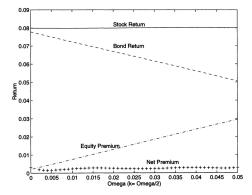
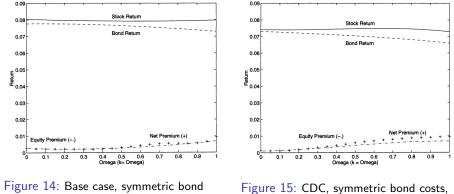


Figure 13: Linear costs, base case, returns

Transaction Costs in Both Markets and Symmetric Bond Market Costs

 Now, suppose both the lender and the borrower bear the cost of transaction in bond market:

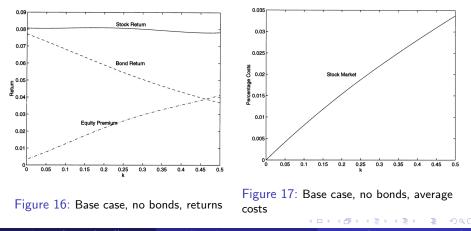


costs, returns

returns

Transaction Costs in Stocks and No Borrowing

- This is the extreme case of when no borrowing is allowed.
- For any level of costs, the level of (shadow) bond return and equity premium is larger than the case with borrowing.



Peyman Shahidi (TeIAS)

October 28, 2019 21 / 23

• With a variable change and assuming that the transaction cost is paid as a lump-sum tax to the government, the results will be the same as when no borrowing is allowed.

Overview

- Introduction
- The Model
 - The Environment
 - Trading Frictions
 - Equilibrium
 - State Variables
- Simulation Results
 - Representative Agent Baselines
 - Frictionless Trading
 - Trading with Transaction Costs

Conclusion

< 4[™] ►

э

In this paper:

- The effect of incompleteness of market on asset prices and risk sharing in presence of both aggregate and idiosyncratic shocks has been studied.
- "direct" effect of costs on equity premium has been discussed:
 - Due to this effect, the market with lower cost of transaction will have lower market rate of return.
 - The size of this effect varies with the structure of the costs.
- "indirect" effect of costs on equity premium has been pointed out:
 - Following an increase in the transaction cost, covariance of consumption and returns increases.
 - This indirect increase in the systematic component of (stock) returns, explains about 20% of the equity premium.
 - It is not sensitive to the cost structure.

Thanks for your attention!

æ