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Abstract

Production is a sequence of steps that can be executed (1) manually, (2) augmented with
AI, or (3) fully automated within contiguous AI-executed steps called chains. Firms bundle
steps into tasks and then jobs, trading off specialization gains against coordination costs. We
characterize optimal assignment of humans and AI to steps and the implied job structure,
showing that comparative advantage logic can fail with AI chaining. The model implies non-
linear productivity gains from AI quality improvements and admits a CES representation at
the macro level. Empirical evidence supports model’s key predictions: (1) AI steps co-occur in
chains, (2) dispersion of AI-exposed steps lowers AI execution at the job level, and (3) adjacency
to AI-executed steps increases likelihood of AI execution.
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1 Introduction

The proliferation of artificial intelligence (AI) tools is likely to raise productivity in the near term
as existing tasks are automated. Although these gains may be substantial, the larger and likely
longer run effects will come from reorganizing production, including shifts in the skill mix of tasks,
human capital requirements, and the definition and design of jobs (Brynjolfsson et al., 2021). The
workhorse framework in economics for studying the impacts of automation technologies is the task-
based model, which represents production as the completion of a set of independent tasks (e.g.,
Autor et al., 2003; Acemoglu and Autor, 2011; Acemoglu and Restrepo, 2019, 2022). In these
models, what matters is each task’s amenability to substitution by, or complementarity with, the
alternative to human labor (e.g., computers, robots, or AI). This approach, however, sets aside
the fact that production requires tasks to be performed in some sequence, and that groups of
tasks constitute “jobs.” We argue that this sequencing is economically consequential and should
be considered as it changes equilibrium predictions about which units of work are automated and
how jobs are organized when technologies such as AI enter production.

We model production as a Leontief technology over an ordered sequence of exogenously specified
steps, and treat the definition of tasks and their partitioning across jobs as endogenous outcomes. A
step is the primitive unit of work in our framework, corresponding to what classic models would call
a “task.” We instead reserve the term task for a contiguous block of steps that the firm endogenously
designates for joint execution by a worker. Jobs are then determined by how tasks are assigned
across workers. In the absence of AI, tasks optimally collapse to single-step blocks so that steps
and tasks coincide. Relative to standard task-based formulations, we endogenize what constitutes
a task and adopt a sequential Leontief structure to discipline the implied complementarities across
production steps.

Firms seek to minimize production costs by choosing which steps of the sequence to delegate
to AI, which to assign to human workers, and how to group tasks into jobs with different skill
requirements. These choices trade off the benefits of specializing work among multiple workers
against the coordination costs created by finer divisions of labor. In the absence of an effective AI
technology, a firm might hire multiple high-skill workers in different job roles to accomplish distinct
steps of its production process, incurring “hand-off” costs whenever work passes from one worker
to another. As the AI technology improves, the firm might instead choose to automate many
of these steps, lumping them together into one logical task, and then hire a single, potentially
lower-skill worker to oversee this automation and validate the production outcome. Whether this
strategy is optimal depends not only on the effectiveness of the AI technology at accomplishing
individual production steps, but also on the sequential relationship between steps, the relative ease
of verification versus manual execution, wages, and coordination costs between workers.

Compared to earlier waves of automation, AI is different in two related ways. First, its capabil-
ities are broad and potentially relevant across many points in production, but also highly jagged,
with sharp variation in performance even across adjacent steps in a workflow (Dell’Acqua et al.,
2023). Second, getting value from AI often requires engineering the right context and interfaces,
so the costs of sequencing work and handing off intermediate outputs become central. As a result,
improvements in AI can shift deployment decisions at multiple points across the production chain
at once, triggering discrete changes in overall production strategy. By endogenizing task sequencing
and the bundling of steps into jobs, we capture these non-local effects of AI capability changes on
task allocation and job design.

We distinguish the short run and the long run in our framework by the degree of flexibility in
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organizational adjustment, and study how AI affects production in each horizon. In the short run,
human capital, wages, and job boundaries are fixed, and AI raises productivity by reducing the
time required to perform steps. In the long run, firms can reorganize their workflows by adjusting
job boundaries, skill requirements, and AI deployment in tandem. Table 1 summarizes the key
distinctions between the two horizons.

Table 1: Summary of AI’s Impact in the Short and Long Run

Time Horizon Job Design
Worker Skills

and Wages

AI Deployment

Strategy
Comments

Short run Fixed Fixed Optimized within jobs
Productivity gains by

automating existing tasks

Long run Flexible
Skills and relative wages

adjust to job design
Optimized across jobs

Joint optimization of AI deployment and

job design to minimize total labor costs

Automation versus Augmentation. Central to our framework is the distinction between full
automation of a production step versus worker augmentation. In our model, three modes of step
completion are recognized: manual, augmented, and automated. Manual completion of a step
means that a human carries out the work without any AI assistance. Augmented completion
involves a human performing the step with the use of AI, which might (or might not) reduce labor
costs. For example, a human describes the requirements of a step to an AI tool, the AI then
executes the step, and its output is reviewed and approved by the human.1 In contrast, we say a
step has been automated if it is completed by AI end-to-end without any direct human intervention.
We view AI automation as a way of putting certain production steps “under the hood” of a logical
meta-task that a worker is attempting to complete. To fix ideas, think of the workflow of a data
scientist whose job requires completing five steps: defining the business question (Step 1), finding
and fetching data needed for answering the question (Step 2), building an analysis pipeline (Step
3), drafting a report (Step 4), and presenting the findings (Step 5). As part of an AI-augmented
request to complete one of these steps (such as Step 4: drafting a report), the AI might also be
assigned to complete one or more preceding steps (such as Step 3: running an analysis, or Steps 2
and 3: finding data and running an analysis) as part of that single request. Any such preceding step
is said to be automated, and the set of all such automated steps, plus the final step that the worker
is actively engaged with, can be thought of as a single worker task which we term an AI chain. By
choosing which steps to automate and which to assign either manually or via augmentation, the
firm implicitly designs the set of tasks exposed to its workers.

Although augmented and automated production steps both involve AI, they differ in one crucial
respect: AI augmentation demands direct human oversight of the AI’s output, whereas automation
does not. Figure 1 illustrates these concepts using the five-step data scientist workflow described
earlier. Steps 1 and 5 are performed manually by a human. Steps 2, 3, and 4 form an AI chain and
are done using AI. Steps 2 and 3 are automated because their outputs feed directly into subsequent
AI steps without human review. Step 4 is augmented because its output is evaluated by a human
before proceeding. The resulting worker tasks in this job thus become 1, 4, and 5.

1In our model, with highly capable AIs the human role shrinks to prompting and judging AI outputs, consistent
with the view in Agrawal et al. (2019).
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Figure 1: Illustrative Example for Division of Labor

Step 1
(Manual)

Step 2
(Automated)

Step 3
(Automated)

Step 4
(Augmented)

Step 5
(Manual)

AI

Human

Notes: This figure illustrates division of labor across five steps: Steps 1 and 5 are manual; Steps 2 and 3 are AI-
automated (done without direct human intervention); Step 4 is AI-augmented (done with AI but requiring human
oversight). Lines from the AI box indicate steps involving AI, and lines from the Human box indicate steps requiring
human execution or oversight. Dashed boxes group steps according to their task assignments: Steps 1 and 5 form
separate human tasks, while Steps 2–4 form an AI chain task.

When a single step is performed by an AI, there is always a human requesting and evaluating
its output in an augmented manner. But with two or more steps it is possible to re-configure
production so that an AI completing one step passes its output directly into the next step without
human intervention (i.e., the first step is automated). This chaining is potentially a source of
large productivity gains but it requires AIs that can perform each step with a high probability of
success. In this sense, the model’s basic setup shares conceptual similarities with the O-ring model
of production (Kremer, 1993; Gans and Goldfarb, 2026).

The decision to deploy AI on a given production step compares the cost of manual execution
to the unified AI-based execution cost. This is different from saying that steps get assigned to
whichever factor of production has comparative advantage in that step. In fact, AI chaining can
overturn standard comparative advantage logic in assignment because, when an AI chain is exe-
cuted, a human worker verifies only the output of the last step of the chain (i.e., the augmented
step). Output verification is therefore a fixed cost of the chain rather than a marginal cost that
scales with each additional step. That is, appending a neighboring step to an existing AI chain
adds no additional verification burden, while it may reduce the probability of AI’s end-to-end suc-
cessful completion of the extended chain. By contrast, assigning the neighboring step to a human
terminates the chain and creates an additional human checkpoint, which entails another output ver-
ification (if the step is augmented with AI) or the cost of human execution (if the step is performed
manually). When AI is sufficiently reliable on the marginal step, avoiding this additional human
checkpoint can dominate, pulling the step into AI execution even if manual human execution is
preferred for it in isolation. In the data scientist workflow example, the worker verifies the report
once at Step 4, so verifying a report produced after AI executes Steps 3–4 requires the same effort
as verifying a report produced after AI executes Steps 2–4; the only difference is that the AI is less
likely to succeed at the latter on any given try. If AI’s success probability at finding and fetching
data is sufficiently high, Step 2 is appended to the AI chain to avoid creating an additional human
checkpoint, even if the data scientist has comparative advantage in data collection in isolation.
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More generally, we should expect the gains from automation to be greatest when highly au-
tomatable steps occur together in the production process. Informally, we can think of a job as more
or less “fragmented” in its exposure to AI depending on whether the steps on which AI is most
effective are mutually coincident or interleaved with steps for which humans hold a strong com-
parative advantage. In Section 5.1 we define a metric of fragmentation for jobs within our model
and show that it approximates the impact of optimal AI deployment. In Section 7 we provide
empirical evidence that jobs with higher fragmentation see a weaker translation from AI exposure
to AI execution.

Jobs and Worker Skill. Each production step is associated with a time requirement and a
skill requirement for manual execution, and a (potentially different) time and skill requirement for
AI-augmented execution.2 These cost parameters are exogenously determined and we treat them
as given. To complete a job, a worker must possess the skills required of all tasks that make up
the job description. Workers are ex-ante identical, as in Becker and Murphy (1992), and acquire
the skills required for their assigned jobs after firms specify their roles. The total labor cost (i.e.,
wage bill) of a job increases with both the time needed to complete all steps and the skill level of
the worker assigned to the job.

To capture the inefficiencies of fragmenting work into narrowly defined jobs, we introduce a
hand-off cost, in time, that must be paid whenever output moves from one worker’s job to another’s.
This creates a tension in job design: specialized jobs, containing fewer tasks, align worker skills more
precisely with the job’s requirements but incur higher hand-off costs. By contrast, generalist jobs,
which bundle multiple tasks with different skill needs, reduce hand-off costs but require workers
to acquire a broad set of skills, only a subset of which is being used at any given time. Appendix
Figure D.1 illustrates this trade-off using a simple two-task production process.

AI adoption changes how tasks are defined and executed, which reshapes the time and skill
requirements along the production process and therefore the forces that determine worker special-
ization. When certain tasks become automated, the optimal assignment of the remaining tasks
across workers can shift, changing the role of skilled labor as an input to production and affecting
wages as well as the distribution of productivity gains. We view this as a channel through which
optimal AI deployment can shift the skill content of work, raising or lowering the relative demand
for skilled labor within a given production process.

Optimizing Automation and its Implications. Assigning steps to production factors is not
a completely trivial optimization problem, even computationally. For a firm with m steps in its
production process, the number of possible production arrangements grows exponentially in m.
For the short-run problem of optimizing AI deployment given fixed job responsibilities and worker
skill levels, we show how to compute the optimal strategy for an m-step job in time O(m2) using
dynamic programming. The firm’s long-run optimization, which includes optimal assignment of
steps and allocation of tasks to worker jobs, can also be solved in polynomial time, subject to
an error term that can be made arbitrarily small. Although we do not do it in this paper, this
algorithmic approach could be combined with micro-details of task content to create rich estimates
of how technological change in various tasks would impact workers.

The AI chaining feature of the model implies that improvements in AI quality can generate
non-linear effects on labor demand and wages. For any fixed production arrangement, better AI

2AI automation incurs no human time or skill requirement.
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reduces costs smoothly by raising AI success probabilities and lowering expected execution times.
However, firms optimize costs over a discrete set of AI deployment strategies and job designs, so the
cost-minimizing arrangement can switch at particular AI quality thresholds. As a result, marginal
improvements in AI may have little or no effect when they do not change the optimal production
arrangement, which is especially likely in the early days of adoption when AI quality is low. Once
AI quality crosses a reorganization threshold, longer AI chains and/or new job designs become
viable and the optimal organization shifts abruptly, changing task allocation, job structure, and
thus labor demand and wages. Our framework thus provides a microfoundation for the productivity
J-curve phenomenon (Brynjolfsson et al., 2021) and yields testable predictions on when and how
AI-driven productivity gains trigger structural reorganization in labor markets.

Micro Foundations of Aggregate CES Production. Our framework yields an algorithmic
cost function at the firm level defined implicitly as the solution to a joint optimization over AI
deployment and job design. This cost function in turn induces a Leontief production function
in which output requires completion of many tasks, some executed manually and others with
AI assistance. Drawing on classic results in production function aggregation (Houthakker, 1955;
Levhari, 1968), we show that although each individual firm has a Leontief production, cross-firm
heterogeneity in how firms deploy a commonly available AI technology allows aggregate production
to admit a constant elasticity of substitution (CES) form at the macro level. We carry out this
aggregation in a way that yields a macro production function with three inputs: economy-wide
aggregate manual labor, aggregate AI-assisted labor, and aggregate capital. This representation
links firms’ internal organizational responses to AI to macroeconomic outcomes, while distinguishing
manual and AI-assisted labor as distinct factors of production.

Empirical Evidence. We complement our theoretical analysis with new empirical evidence that
speaks directly to the core mechanisms emphasized by the model. We assemble a dataset that links
O*NET tasks to human assessments of AI exposure (Eloundou et al., 2024), realized AI execution
outcomes from Anthropic’s Economic Index (Handa et al., 2025), and GPT-generated workflow
orderings for each occupation. This allows us to observe not only which production steps are
exposed to AI, but also where they sit in an occupation’s workflow and whether they are ultimately
performed manually, augmented with AI, or automated by AI.

We test, and find empirical evidence consistent with, three key predictions that follow from
the theoretical model. First, we examine whether AI-executed steps appear in contiguous blocks
rather than being randomly scattered throughout the production workflow. Co-occurrence of AI
steps is a direct implication of the model’s chaining mechanism, in which the primary gains from
AI arise when multiple adjacent steps are delegated jointly to AI. We document that in the data AI
execution indeed operates over consecutive steps, a pattern consistent with modeling AI as acting
on sequences rather than as an independent execution substitute at the individual step level.

Second, the model emphasizes that sequencing plays a central role in determining the returns
to AI automation. We show empirically that, controlling for the share of steps exposed to AI,
occupations whose AI-exposed steps are more dispersed across the production workflow exhibit a
substantially lower share of their steps executed by AI. This finding supports the fragmentation
logic of the model and illustrates why considering just the share of exposed steps to AI can be
misleading for predicting occupational impacts of AI when production steps are technologically
interdependent.
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Third, the chaining mechanism implies strong local complementarities in AI automation deci-
sions within a workflow. When a step is positioned next to AI-executed neighbors, local gains from
automating it as part of a chain may induce its AI execution even if human execution would be
preferred for that step in isolation. We show empirically that when conceptually similar steps ap-
pear across different occupations, a given step is more likely to be executed by AI in the occupation
where its neighboring steps in the workflow are also AI-executed. This pattern provides direct evi-
dence that AI execution depends not only on comparative advantage and step-level characteristics,
but also on the local production context created by adjacent steps in the workflow.

2 Related Literature

Task Interdependence in Task-based Models of Automation. Our framework relates to
the literature on task-based models of technical change, which generally view tasks as predetermined
and technologically independent objects combined through a CES production function (Acemoglu
and Autor, 2011; Acemoglu and Restrepo, 2019; Acemoglu et al., 2022). In such settings, compara-
tive advantage at the task level fully determines assignment, and automation proceeds step-by-step
according to relative efficiencies. We depart from this classic framework by modeling production as
a sequence of technologically interdependent steps governed by a Leontief structure. This sequential
formulation generates forces that can overturn standard comparative advantage logic: even when
humans have an advantage at a given step in isolation, the firm may assign it to AI if doing so
helps form a cheap AI chain, particularly when neighboring steps are strong AI performers.3

The chaining feature of the model further connects to, and helps reconcile, competing views
about automation in production. Although much of the AI and labor literature emphasizes task-
level substitution between AI and workers, Autor et al. (2003), Acemoglu and Restrepo (2019),
and Bresnahan et al. (2002), among others, argue that meaningful substitution often occurs at the
system level. Our model shows how step-level automation decisions can aggregate into system-level
changes through AI chaining. Rather than requiring that steps be automated one by one, entire
chains can be automated in a single leap, consistent with the perspective emphasized by Bresnahan
et al. (2002).

Measuring AI Exposure and Realized Execution. A rapidly growing literature has sought
to quantify the impact of new automation technologies on the labor market. Early work studies the
susceptibility of occupations to computerization (Frey and Osborne, 2017), and more recent work
develops measures of occupational exposure to AI (Brynjolfsson et al., 2018; Webb, 2020; Felten et
al., 2021; Eloundou et al., 2024; Tomlinson et al., 2025), typically by mapping technologies to specific
tasks and then aggregating these task-level mappings linearly to construct occupation-level indices.
We depart from this literature by showing that linear aggregation obscures the crucial role of task
interdependence. In our framework, the productivity gains from AI depend not only on how many
of an occupation’s steps are exposed to AI, but also on where those steps sit relative to one another

3A related perspective on task interdependence in task-based models appears in Trammell (2025), who studies
learning spillovers across tasks. Although both his framework and ours feature interdependent tasks, their focus and
margin of analysis differ sharply. In our setting, task interdependence is an intrinsic technological feature that creates
coordination frictions when production is shared across multiple workers. By contrast, Trammell (2025) models
interdependence as an endogenous result of economies of scale for the same worker, where performing more tasks
raises productivity on subsequent tasks through learning, abstracting from cross-worker coordination frictions within
the firm.
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in the production sequence. To capture these non-linear interactions, we introduce the concept of
“fragmentation,” the degree to which AI-suitable steps are dispersed across the workflow. In this
sense, our fragmentation index serves as a bridge between occupation-level exposure measures and
the actual patterns of AI execution observed in practice.

Technology Adoption, Complementarities, and O-Ring Dynamics. Our work contributes
to the literature on friction-laden technology adoption and organizational complementarities. Em-
pirical work shows that information technologies raise productivity primarily when combined with
complementary organizational changes (Bresnahan et al., 2002; Bloom et al., 2016). This aligns
with the supermodularity framework of Milgrom and Roberts (1990, 1995), in which clusters of
mutually reinforcing practices drive performance. We provide a micro-foundation for these com-
plementarities through the lens of the O-ring theory of production (Kremer, 1993): when tasks are
complementary because of sequencing, the returns to improving any one step depend on perfor-
mance elsewhere in the chain. In our setting, AI chaining makes this logic salient, since the payoff
to automating a step depends on whether adjacent steps can be executed as part of the same AI
block, generating threshold effects and discrete changes in optimal AI adoption and job design.
The closest paper to ours in this regard is Gans and Goldfarb (2026), who likewise emphasize
task interdependence in O-ring production and show that complementarities can generate “lumpy”
automation decisions via time/attention reallocation rather than workflow adjacency.

Our framework also provides a micro-foundation for the “productivity J-curve” argument (Bryn-
jolfsson et al., 2021), in which adoption costs and transitional reorganization precede realized pro-
ductivity gains. In our model, the marginal benefit of improving AI technology grows non-linearly,
with substantial gains emerging only once the technology crosses thresholds that induce discrete
reorganizations of work and enable the formation of longer AI chains. This dynamic is consistent
with recent analyses of U.S. Census microdata, which show that AI adoption initially reduces pro-
ductivity (McElheran et al., 2025), as well as evidence from several other studies (Furman and
Seamans, 2019; Tambe and Hitt, 2012; Bonney et al., 2024; McElheran et al., 2024).

Division of Labor and the Boundaries of the Job. Finally, our work connects to the litera-
ture on the division of labor within a firm. We apply the Coase–Williamson logic that firm bound-
aries are shaped by coordination, transaction, and governance costs (Coase, 1937; Williamson,
1971, 1979) to the “boundary of the job,” where the firm chooses how many and which tasks to
bundle into a worker’s role, thereby determining the degree of worker specialization endogenously
(Murphy, 1986). In our setting, hand-off costs serve as an intra-firm analogue of transaction costs:
assigning a task to a different job moves it across a governance boundary and exposes it to coor-
dination frictions, whereas integrating tasks into the same job resembles vertical integration at a
finer, task-level margin. Our approach builds on the view that the division of labor is limited by
coordination frictions and the difficulty of integrating specialized knowledge (Becker and Murphy,
1992), and it echoes Dessein and Santos (2006) in highlighting the tension between specialization
and the need to coordinate interdependent tasks.4

In our framework, AI does not alter the hand-off costs associated with steps, which are intended

4Ide and Talamàs (2025) provides a related view on how AI in particular affects the structure of work. While
we examine how it redefines job boundaries through a task-based framework, they embed AI as an autonomous
problem solver in a knowledge hierarchy model (Garicano, 2000; Garicano and Rossi-Hansberg, 2006) and study how
it reshapes spans of control within the firm.
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to capture coordination frictions arising from tacit or social knowledge that is not easily executable
by AI (Deming, 2017). Nevertheless, AI can still restructure the division of labor through chaining in
two distinct ways. First, on the intensive margin, chaining can pull previously manual steps “under
the hood” of a single AI-executed task, narrowing the span of activities requiring direct human
attention and shifting responsibility within a role. Second, on the extensive margin, by lowering
the cost of linking adjacent steps that lie across a job boundary, chaining can make it optimal
to redraw that boundary, reassigning activities across roles and altering the pattern of realized
hand-offs and coordination within the firm. Both channels effectively alter the skill requirements of
workers and the expertise they must possess to perform their jobs (Autor and Thompson, 2025).

3 Model

A firm’s production process consists of a sequence of steps S = (s1, . . . , sm).5 The firm can partition
contiguous subsequences of steps into a sequence of tasks T = (T1, . . . , Tn) where Tb = (si, . . . , si+ℓ)
for some i and ℓ. The firm can also partition contiguous subsequences of the resulting tasks into
jobs J = (J1, . . . , Jp). Figure 2 provides an illustration for a production process with m = 7 steps,
n = 5 tasks, and p = 3 jobs. The cost of any such partitioning depends on the time and skill needed
for the component steps, the mode in which the step is completed, and the grouping of steps and
tasks. We discuss these in turn.

3.1 Steps

Each step can be completed either with AI assistance or manually (without AI). If the firm assigns
step i to manual execution (denoted by M), it hires a human worker of skill level cMi and pays
for the time tMi required to complete the step without AI. Alternatively, if the firm assigns step
i to AI-assisted execution (denoted by A), it hires a human worker of (potentially different) skill
level cAi and pays for the time tAi spent completing the step in collaboration with AI.6 Such a
collaboration succeeds independently with some (step-dependent) probability qi = αdi where α is
the quality of the general purpose AI technology and di represents how “difficult” step i is for AI.
The collaboration must be repeated until it succeeds, incurring the time cost of tAi per iteration for
a total expected time cost of tAi /qi.

Definitions 1 and 2 formalize the two modes of performing a single step explicitly.

Definition 1 (Manual Step). A step i is said to be performed manually if it is executed entirely by
a human worker without AI assistance. The associated skill and time costs for a manual step are
denoted by (cMi , tMi ).

Definition 2 (Augmented Step). A step i is said to be augmented if it is executed by the AI, after
which its output is reviewed and approved by a human worker. The associated skill and (expected)

time costs of managing a single augmented step are denoted by (cAi ,
tAi
qi
), where qi ∈ (0, 1] is the AI’s

probability of successfully completing the step.

5We hold the set of production steps fixed and abstract from the creation or disappearance of underlying work
activities (Autor et al., 2024) in our model.

6This could, for example, represent the time spent formulating a prompt for AI and checking the response, or
“managing” the AI.
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Figure 2: Illustrative Example of a Firm’s Production

Step 1
(Manual)

Step 2
(Automated)

Step 3
(Automated)

Step 4
(Augmented)

Step 5
(Manual)

Step 6
(Augmented)

Step 7
(Manual)

Task 1
(Human)

Task 2
(AI Chain)

Task 3
(Human)

Task 4
(AI Chain)

Task 5
(Human)

Job 2Job 1 Job 3

Notes: This figure illustrates how a firm aggregates steps into tasks and tasks into jobs. The top layer includes m = 7
steps, categorized into Manual (gray), Automated (green), and Augmented (orange) modes of execution. Steps are
grouped by dashed boxes colored to match their corresponding task boxes in the layer below. The second layer
aggregates steps into n = 5 tasks, labeled as Human-executed tasks (olive) or AI Chains (purple), depending on their
mode of execution. Dashed boxes in this layer are colored cyan to correspond with the jobs layer below. The third
layer consolidates tasks into p = 3 jobs, represented by cyan-colored boxes. Vertical colored arrows between layers
show aggregation from individual steps into tasks (top to middle layer) and from tasks into jobs (middle to bottom
layer). Within each layer, horizontal arrows show the flow of production. The red curly arrows represent hand-off
costs incurred at the boundary of jobs in the third layer, which can be traced back to the associated tasks and steps
in the upper layers.

3.2 Tasks

Tasks are the basic unit of work of a human worker. Any step performed in isolation during the
production process, either manually or in collaboration with AI augmentation, is a task. The
associated skill and time costs for the resulting task are precisely the skill and time costs for the
associated step performed in the chosen mode. Steps can also be automated by chaining them
together, creating a new aggregate task.

Definition 3 (Automated Step). A step is said to be automated if it is executed entirely by AI
without direct human intervention, and its output is passed directly to a subsequent augmented or
automated step. The direct human costs (in both skill and time dimension) associated with an
automated step are zero.

Definition 4 (AI Chain). An AI chain is a contiguous block of one or more sequential steps
executed by AI, in which all steps but the final one are automated and the final step is augmented.
An AI chain spanning steps (sℓ, . . . , sr) has steps (sℓ, . . . , sr−1) automated and step sr augmented.
The skill and (expected) time costs of this AI chain are given by:(

cAr ,
tAr∏r
i=ℓ qi

)
,
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where qi denotes the AI success probability for step si.

We can think of an AI chain as a single aggregate task that is being delegated to an AI. Successful
completion requires that the AI complete all steps in (sℓ, . . . , sr). The human worker who manages
the AI execution of this chain need only prompt for and evaluate the goal step, sr; all other steps in
the chain are assumed to be fully automated “under the hood” and hence beneath the awareness of
the human worker. Managing an AI attempt at the chain therefore has the same costs as augmenting
step sr: namely, skill cost cAr and time cost (per attempt) tAr . Successful completion of the chain
requires that the AI complete every constituent step successfully. Assuming independent failures,
this occurs with probability

∏r
i=ℓ qi, which we can view as the success probability for the aggregate

chained task. Putting this all together yields skill and expected time costs (cAr , t
A
r /
∏r

i=ℓ qi) for the
AI chain, as described in Definition 4.

Note also that since qi = αdi , where recall di is a measure of the difficulty of step si, the
probability of successful completion of an AI chain spanning steps (sℓ, . . . , sr) can be written as
α(

∑r
i=ℓ di). We can therefore think of

∑r
i=ℓ di as the total difficulty of the chain, which aggregates

additively over its constituent steps.
To summarize, a task is either a manually-performed step, an AI-augmented step, or an AI

chain. We define an AI deployment strategy (or AI strategy for short) as a sequence of tasks T
that partitions the step sequence S into contiguous subsequences, with each singleton task being
designated for either manual or AI-augmented execution and non-singleton tasks being AI chains.

3.3 Jobs

A job is a subsequence of tasks that are assigned to a single human worker. Recall that each
task Tb in task sequence T = {T1, . . . , Tn} has associated skill and time costs (cb, tb) that can
depend on whether the task is being completed manually or with the aid of AI. A job J is a
contiguous subsequence of tasks, say J = (Tb, . . . , Tb+ℓ) for some b and ℓ. We say that a partition
J = (J1, . . . , Jp) of all tasks into jobs is a job design.

The firm hires one worker for each job in its job design J . The worker for job Jj completes all
tasks associated with their job. The total time needed to complete all tasks in job Jj is

∑
Tb∈Jj tb.

A worker’s wage is determined by the total skill required to complete their job. The total skill
required to complete the tasks in job Jj is

∑
Tb∈Jj cb. We then assume that a worker’s wage is

proportional to the skill level of their job.7 That is,

Wagej =
∑
Tb∈Jj

cb. (1)

The firm must pay workers their wage per unit of time regardless of which tasks they are assigned
to complete at any given moment.8 While we allow the firm to specialize its job design and partition
its production process into distinct jobs, we acknowledge that there are inherent inefficiencies and

7One motivation for this formulation is workers paying a human capital investment to acquire the skills necessary
for a job. This investment must be offset by wages, and we express skill levels in units of their corresponding requisite
wage. Rather than formalizing such a wage model here, we impose this as an assumption and provide a more detailed
wage formulation in Section 6.

8This derivation implicitly assumes a common base wage rate; i.e., all wage differentiation is driven by the human
capital cost of acquiring skills. More generally, different tasks Tb within job Jj could have different base wage rates
wb that could be influenced, for example, by the supply of and demand for labor of the corresponding type. One
special case, explicitly motivated and discussed in Section 6, assumes manual tasks are executed by human labor
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frictions that are introduced when splitting work among multiple workers. Absent such frictions
in our model, it would always be optimal for a firm to specialize its workers as much as possible,
assigning a distinct worker to each task of its production process. We therefore introduce hand-off
costs to a job design, as follows. In addition to the time required completing tasks, a worker may
need to spend time handing off their work to another worker if Jj is not the final job in the job
design J . We will assume throughout that the hand-off time of a worker assigned to job Jj depends
only on the final step of job Jj (see Figure 2). That is, conditional on where the hand-off occurs in
the production process, its cost does not otherwise depend on previous hand-off events. Given step
si, we write tHi to denote the additional hand-off time spent by a worker for whom the last step of
their job is si. For notational convenience we define the hand-off time for the final step sm to be
zero: tHm = 0. Also for notational convenience, we will write tH(Jj) to denote the hand-off time of
job Jj , which recall is equal to tHi if si is the final step in job Jj . Thus the total time needed to
complete job Jj , including hand-off costs, is

tH(Jj) +
∑
Tb∈Jj

tb.

Taking into account both time and skill requirements, the total wage bill paid to a worker
assigned to job Jj , per unit of output, is

WageBillj =

(∑
Tb∈Jj

cb

)(
tH(Jj) +

∑
Tb∈Jj

tb

)
. (2)

Equation (2) highlights two opposing forces that shape a job’s boundaries. Adding more tasks to
a worker’s job increases the cumulative skill requirement and thus the wage rate for that worker.
However, if tasks are kept separate, workers must incur additional hand-off costs at each job
boundary. These two effects—higher wages from combining tasks versus higher hand-off costs from
keeping them separate—jointly determine the optimal degree of task aggregation. We explore this
trade-off in greater detail in Section 3.5.

3.4 Firm’s Organizational Structure

Given the sequence of steps S = {s1, . . . , sm}, the firm can design both the partition T of steps
into tasks and the partition J of tasks into jobs. The choice of T determines the time and skill
requirements of each task. Given T , the choice of J then determines worker wage rates and time
needed per unit of output (including hand-off costs). Formally, we can write P(X) for the set
of partitions of a sequence X into continguous subsequences. Then the full optimization problem
faced by the firm can be expressed as

min
T ∈P(S)

min
J∈P(T )

TotalCost(J ; T ) =
∑
Jj∈J

WageBillj =
∑
Jj∈J

[( ∑
Tb∈Jj

cb

)(
tH(Jj) +

∑
Tb∈Jj

tb

)]
(3)

at base wage rate wM , and AI-assisted tasks are executed by AI management labor at base wage rate wA. The
formulation in Equation 1 implicitly normalizes these base wage rates to 1, incorporating them into skill costs cb for
notational simplicity. We maintain this normalization throughout subsequent sections until we explicitly distinguish
human labor and AI management labor base wage rates in Section 6.
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where recall that, for each Tb ∈ T , tb and cb are as described in Section 3.2 and can depend on the
selected mode of operation for individual steps.

We refer to (3) as the firm’s long-term optimization problem, as it anticipates the adjustment
of worker wages to fit the skill requirements of each job and sets job responsibilities accordingly.
We also define a short-term optimization exercise in which jobs and worker wages are fixed but the
firm may still wish to use AI to maximize worker productivity. This is equivalent to minimizing
the time needed for a worker to perform a unit of work in their assigned job. It therefore suffices
to optimize for each job separately. Thus, in the short-term optimization problem, we can assume
without loss of generality that the sequence of steps S = (s1, . . . , sm) is to be completed by a single
worker paid at a (normalized) unit wage. The resulting optimization problem faced by the firm
can be expressed as

min
T

∑
Tb∈T

tb (4)

where recall that if Tb = (sℓ) is a manual task then tb = tMℓ , and otherwise if Tb = (sℓ, . . . , sr) for

some ℓ ≤ r then tb =
tAr∏r
i=ℓ qi

where qi is the AI’s probability of successfully completing step si.

3.5 Hand-off Costs and the Limits of Worker Specialization

Here we discuss how hand-off costs determine the optimal organization of production and limit full
worker specialization in the firm’s long-run problem (3). We leverage insights from a numerical
example as well as a geometric illustration, which together show how task aggregation balances
higher wages against lower coordination costs.

Consider a production process that, under a fixed AI deployment strategy T , has n = 3 tasks
with the following cost parameters:

Task cb tb tHb

1 3 1 3

2 1 2 0.5

3 2 2 0

With three tasks, there are four ways the firm can design jobs.9 Denoting jobs by square
brackets, with three tasks the four possible job designs are {[1][2][3], [1, 2][3], [1][2, 3], [1, 2, 3]}.
The cost of these job designs for the example above is given in Table 2. In the absence of hand-
off costs in Panel (a), the optimal job design corresponds to full specialization: each task forms
a separate job assigned to a different worker. When hand-off costs are introduced in Panel (b),
however, the optimal design changes to one in which tasks 1 and 2 are combined into a single job,
while task 3 remains separate. This structure is optimal because it avoids the large hand-off cost
that would otherwise arise between tasks 1 and 2 due to the large hand-off time value tH1 = 3.
By aggregating tasks 1 and 2, the firm pays a higher wage to a more skilled and more versatile
worker but eliminates the costly coordination between the two tasks, lowering total production
cost. Equation (2) captures this trade-off explicitly: adding more tasks to a worker’s job raises
the wage rate through the skill term

∑
Tb∈Jj cb, while keeping tasks separate raises total cost

9More generally, a production process with n tasks has 2(n−1) unique job designs.
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Table 2: Role of Hand-off Costs in Organizational Structure

Panel (a): Without Hand-off Costs

Job
Design

Job
Job
Tasks

∑
b

∑
tb

Job
Cost

Total
Cost

Optimal
Design

[1][2][3]

1 {1} 3 1 3

9 ✓2 {2} 1 2 2

3 {3} 2 2 4

[1,2][3]
1 {1, 2} 4 3 12

16
2 {3} 2 2 4

[1][2,3]
1 {1} 3 1 3

15
2 {2, 3} 3 4 12

[1,2,3] 1 {1, 2, 3} 6 5 30 30

Panel (b): Including Hand-off Costs

Job
Design

Job
Job
Tasks

∑
b tH +

∑
tb

Job
Cost

Total
Cost

Optimal
Design

[1][2][3]

1 {1} 3 4 12

18.52 {2} 1 2.5 2.5

3 {3} 2 2 4

[1,2][3]
1 {1, 2} 4 3.5 14

18 ✓
2 {3} 2 2 4

[1][2,3]
1 {1} 3 4 12

24
2 {2, 3} 3 4 12

[1,2,3] 1 {1, 2, 3} 6 5 30 30

Notes: This table reports total production costs for each possible job design in an example production process
with a fixed automation strategy and n = 3 tasks. The cost parameters of the tasks are given by (cb, tb, t

H
b ) =

{(3, 1, 2), (1, 2, 2), (3, 0.5, 0)}. In the absence of hand-off frictions, full specialization, corresponding to job design
[1][2][3], is cost-minimizing. Once hand-off costs are taken into account, the optimal organizational structure changes
to job design [1,2][3], which avoids the large coordination cost between tasks 1 and 2 at the expense of employing a
higher-cost (more skilled) worker to complete those tasks.

through additional hand-offs tH(Jj). These two effects jointly determine the optimal degree of task
aggregation.

The cost of different job designs admits a geometric interpretation as well. Figure 3 visualizes
the production process of the example in Table 2 as stacked rectangles, where each rectangle’s
height corresponds to cb and its width to tb. Panel (a) depicts the job design when hand-off costs
are zero, Panel (b) shows the same process with hand-off costs. Visually, optimal job design balances
two opposing forces. Combining tasks into a single job eliminates the pink rectangles representing
additional hand-off costs between tasks, but creates inefficiencies due to the higher skill level of the
worker required to do the job. Conversely, splitting tasks into separate jobs eliminates the intra-job
inefficiencies but incurs hand-off time costs at each job boundary. These boundary costs scale with
the cumulative human capital of the switching worker, so the height of the pink hand-off rectangle
in Panel (b) equals the sum of human capital heights for that job. Cost-effective job design must
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Figure 3: Geometric Interpretation of Job Designs

(a) Job Design Without Hand-off Costs (b) Job Design With Hand-off Costs

Notes: Each panel visualizes the production process as stacked rectangles, where the area of each job’s bounding box
represents its wage bill. Panel (a) sets hand-off costs to zero, in which case it is optimal to assign one task per job.
Panel (b) introduces hand-off costs, which alters the cost structure and makes the [1,2][3] design cost-minimizing.

balance these effects.
We have modeled hand-off costs as fixed and not influenced by the introduction of AI. In

reality, AI may reduce the cost of hand-offs between workers as well. This might occur because the
communication burden of handing off tasks could be partially automated through AI assistance.
While we do not model this explicitly, we expect that such a force would reduce the impact of
hand-off costs and result in a higher degree of worker specialization.10

4 Optimization

In this section we consider the optimization problems (both short-term and long-term) faced by
a firm choosing how to integrate the AI technology into their production process. We begin by
studying the short-term problem of optimizing AI deployment strategy keeping job design and
worker wages fixed. We then move on to the joint optimization of deployment and job design
taking into account long-term wage impacts.

10A useful interpretation of hand-off costs is that they consist of two components: (i) peripheral coordination work
that can be facilitated by AI (e.g., drafting messages, summarizing prior work, formatting documentation), and (ii)
a purely manual remainder that relies on tacit, interpersonal, or social knowledge and is not easily executable by
AI (Deming, 2017). For tractability, we abstract from the first component in our framework and treat its benefits
as absorbed into execution and AI management time costs. The hand-off cost in the model should therefore be
read as capturing the second, irreducibly human component, even though AI-facilitated reductions in the peripheral
component may matter in practice.
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4.1 Short-Term Optimization: AI Deployment Design

We begin with a “short-term” optimization problem: the job design and worker wages are assumed
to be fixed, so the goal is to find the choice of AI strategy for a single job that minimizes the total
time cost. This optimization problem analyzes short-run benefits of AI: where worker skills are
fixed but AI can still be employed to speed up tasks through some combination of augmentation
and automation.

Since the job design and worker wage are fixed, it suffices to optimize for the amount of time
spent to complete a unit of work for each job separately. So, from this point onward, we assume
that there is a single job J with m steps S = (s1, . . . , sm), and our goal is to find the sequence
of tasks T that minimizes total completion time. It turns out that the time-optimal production
strategy can be calculated via dynamic programming in O(m2) time.

Proposition 1. Given m steps organized into a single job, the time-optimal AI strategy can be
calculated in time O(m2) via dynamic programming.

Proof. We first note the following recursive formulation of the optimization problem. For all k ≤ m,
let C[k] denote the minimum time needed to complete a hypothetical job that only includes steps
1 through k. Note that, because of the way we defined C[k], task k cannot be automated in any
minimum-time solution that determines C[k]; it can only be augmented or performed manually.
Note also that C[m] is the time cost of our desired optimal solution.

We now show how to calculate C[k] recursively. As a base case we have C[0] = 0, as the empty
set of steps requires no time to complete. For k ≥ 1, C[k] is the lesser of

C[k − 1] + tMk

and

min
ℓ<k

{
C[ℓ] +

tAk∏k
i=ℓ+1 qi

}
.

In other words, we either complete step k manually (in which case we separately optimize over
steps 1 through k − 1) or we augment step k. In the latter case, we then optimize over the length
of the AI chain that ends with the newly-augmented step k. This could be a singleton chain with
no automation (corresponding to ℓ = k − 1), or a longer chain that automates one or more steps
before step k (corresponding to a choice of ℓ < k− 1). For any such choice of ℓ, we then separately
optimize the production strategy for tasks 1 through ℓ.

Using this formulation, given the values (C[0], . . . , C[k−1]), we can calculate C[k] in time O(k)
by considering each potential choice of ℓ. Doing so for each k = 1, 2, . . . ,m yields the value of C[m]
(and the corresponding optimal AI strategy) in total time O(m2).

4.2 Warm-up to Long-Term Optimization: Job Design without AI

We now move to a broader optimization problem in which the firm can reorganize job requirements
and the assignment of tasks to workers. As a warm-up to the full joint optimization of jobs and
AI deployment, we first show how to optimize the design of jobs for a fixed task structure. We can
interpret this as a labor optimization problem without AI deployment, where each step has only a
single (i.e., manual) mode of completion and hence the task structure is fully determined.
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Proposition 2. Given a fixed sequence of tasks T = (T1, . . . , Tn) with skill and time costs c =
(c1, . . . , cn) and t = (t1, . . . , tn), the cost-minimizing job design J can be computed in time O(n2)
by dynamic programming.

Proof. We first note the following recursive formulation of the optimization problem. For all k ≤ n,
let C[k] denote the minimum cost of a job design for tasks 1 through k, including hand-off costs
for task k. Note then that C[n] is the cost of the optimal job design for all tasks, recalling that the
hand-off cost for the final job (i.e., the job that includes task n) is always 0.

We now show how to calculate C[k] recursively. As a base case we have C[0] = 0. For k ≥ 1 we
have

C[k] = min
s<k

{
C[s] +

[(
k∑

i=s+1

ci

)(
tHk +

k∑
i=s+1

ti

)]}
.

In other words, we optimize over the choice of the final job {s + 1, . . . , k}, accounting recursively
for the optimal job design for remaining jobs. Note that we make implicit use of the assumption
that the handoff cost tHk depends on the final task Tk of this final job but is otherwise independent
of the job design. Using this formulation, we can calculate each C[k] in time O(k) by considering
each potential choice of s. Doing so for each k = 1, 2, . . . , n yields the value of C[n] (and the
corresponding optimal job design) in total time O(n2).

4.3 Full Long-Term Optimization

We now consider full joint optimization of job design and AI deployment strategy, accounting for
both time and skill costs of workers assigned to the resulting jobs. In other words, the firm’s goal is
to choose both the set of AI chains to implement—yielding a vector of skill and time costs—along
with a job design for the resulting tasks.

4.3.1 Recursive Formulation of Optimization Problem

Here we present a recursive formulation of the firm’s cost minimization problem. In Section 4.3.2
we propose an approach to calculate an approximation of the optimal solution via dynamic pro-
gramming.

Consider a production process with m steps S = {s1, s2, . . . , sm}. For 0 ≤ i ≤ m, let V (i)
denote the minimum cost required to complete steps 1 through i using one or more jobs, including
any hand-off costs to a subsequent worker. Note then that V (m) is the solution to the desired
optimization problem, recalling that the hand-off time for the final job will always be 0. Note also
that it is implicitly assumed in the definition of V (i) that it optimizes over job designs for steps 1
through i in which the final job terminates after the completion of step i.

It will also be helpful to consider optimal designs for steps 1 through i in which the final
job doesn’t necessarily terminate after the completion of step i, but rather continues onward to
subsequent steps. To that end, we introduce an auxiliary functionW (i, c, t). This function denotes
the minimum cost of completing steps 1 through i, as well as some additional (but unspecified)
set of tasks that have already been assigned as a single job to a single worker (referred to as the
“active worker”). It is assumed that the tasks assigned to the active worker have total time cost
t and total skill cost c. The time cost t is assumed to already include any hand-off cost for this
active worker (which recall depends only on the final step of the worker’s final task). Crucially, the
minimum is taken over all AI deployment strategies and job designs, including those that expand
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the number of tasks assigned to the active worker (e.g., by including step i in the active worker’s
job). In this sense, W (i, c, t) captures the minimum cost across all feasible job designs and AI
strategies that may potentially expand the active worker’s task assignment.

Note that, for all i ≤ n, we have

V (i) = W (i, 0, tHi ).

This is because, in V (i), all job designs must end with a job that completes at step i and hands off
to the following worker. Consequently, the hand-off cost associated with step i must be incurred by
the final worker. Equivalently, this can be thought of as assigning the active worker an additional
task with zero skill requirement but a time cost equal to the hand-off cost of step i right after step
i itself. This scenario is represented explicitly by W (i, 0, tHi ).

Also note that, for the base case i = 0, we have

W (0, c, t) = c t, for all c, t.

This is because, if i = 0, then there are no further steps to add to the job of the active worker.
The active worker’s skill and time requirements are therefore determined entirely by the steps they
have already been assigned.

We are now ready to describe a recursive formulation of the function W (i, c, t) for i ≥ 1. We
emphasize that in the definition of W (i, c, t), the active worker has not been assigned step i; we
can think of step i as the highest-indexed step that has not yet been assigned to a worker.

Proposition 3 (Recursive Formulation of Job Design Problem). For each i ≥ 1, the minimum
cost function W (i, c, t) satisfies the following recursive relation:

W (i, c, t) = min

{
c t + V (i),

W (i− 1, c + cMi , t + tMi ),

min
r<i

W

(
r, c + cAi , t +

tAi∏i
s=r+1 qs

)}
.

The cost of the optimal joint AI strategy and job design for a given sequence of m steps is then
V (m) = W (m, 0, 0).

The recursive formulation in Proposition 3 evaluates the minimum cost among three distinct
alternatives at each step:

• Option (1): The term c t + V (i) corresponds to not adding any further steps to the job
of the active worker. All steps 1 through i will be completed by other workers. The active
worker’s total cost is then c t, and V (i) is the total cost of completing steps 1 through i
(including hand-off costs to the active worker).

• Option (2): The term W (i−1, c+cMi , t+ tMi ) corresponds to designating step i for manual
completion, and adding the corresponding (singleton) task. In this case, the manual execution
costs (cMi , tMi ) of step i are added to the accumulated costs of tasks already assigned to the
active worker, extending their job to include step i as well.

17



• Option (3): The term minr<i W

(
r, c + cAi , t +

tAi∏i
s=r+1 qs

)
corresponds to creating an AI

chain task for steps r+1 through i, with step i being augmented and steps r+1 through i−1
automated, and assigning the resulting task to the job of the active worker. Step i is thus
chained with zero or more preceding (automated) steps, and the associated AI management
costs are added to the active worker’s skill and time costs. The index r corresponds to the
highest-index step that is not added to this AI chain, which can be any value between 0 and
i− 1.

Note that in evaluating option (3) of the recursive step for W (i, c, t), step i can only be augmented
(rather than automated) as each step of the recursion adds a full AI chain to an active worker’s
job. AI strategies in which step i is automated are considered when performing task calculations
W (r, c, t) with r > i.

4.3.2 Calculating an Approximately Optimal Solution

Given our recursive formulation, we wish to use dynamic programming to solve for the jointly
optimal job design and AI strategy by filling in the values of W (i, c, t) for all i, c, and t. Since c
and t take on continuous values, we will discretize all skill costs c and time costs t to appropriate
powers of (1 + ϵ), where ϵ > 0 is an arbitrarily small error term. We obtain the following result.

Proposition 4. Fix any sequence of m steps S = (s1, . . . , sm) for which all skill costs, time costs,
and hand-off costs lie in [1/B,B] for some B > 0. Then for any ϵ > 0, an approximately cost-
minimizing pair of AI strategy T and job design J minimizing expression (3) to within a factor of
(1 + ϵ) can be computed in time O(m2ϵ−2 log2(mB)) by dynamic programming.

Proof. The first step of proving Proposition 4 is to determine the range of powers of (1+ ϵ) that we
must consider in our discretization. Suppose that all manual and augmented skill and time costs,
as well as all hand-off costs, lie in [1/B,B] for some B > 0. In this case, note that any subsequence
of steps could be completed at a total cost of at most 2mB2 by performing them all manually by
different workers, incurring a time and handoff cost of at most B each for a total time of 2B, and
a skill cost of at most B for a total cost of 2B2 for each of the m tasks. We therefore need not
consider any solution containing a job with total cost greater than 2mB2. In particular, since any
non-zero skill cost for any job is at least 1/B, we need not consider any job design in which a job
has total time cost greater than 2mB3. Furthermore, each job has total skill cost lying between
1/B and mB (as skill costs combine additively) and time cost at least 1/B (as each step’s manual
cost is at least 1/B, and any AI chain’s time cost is at least the management cost of its final step
which is also at least 1/B).

We conclude that when filling table W (i, c, t), it suffices to consider skill costs c lying in the
range [1/B,mB] and time costs t lying in the range [1/B, 2mB3]. There are O(ϵ−1 log(mB)) powers
of (1+ϵ) in each of these ranges, so our table will have O(mϵ−2 log2(mB)) total entries. Each entry
can be filled in time O(m) by considering the recursive formulation in Proposition 3, for a total
runtime of O(m2ϵ−2 log2(mB)).

Note that while the table formally describes only the cost of a solution and not the solution
itself, one can also read off the corresponding task and job design as well. Indeed, by recording
which of the options described in Proposition 3 achieves the minimum for each table entryW (i, c, t),
one can trace out the corresponding task and job designs starting with V (m) = W (m, 0, 0). The
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pair of AI strategy T and job design J can therefore be computed in time O(m2ϵ−2 log(mB)), the
same as the time required to fill the table.

It remains to bound the error introduced by our discretization. Consider the recursive formu-
lation in Proposition 3 and suppose that c and t are rounded down to the nearest power of (1+ ϵ).
Since time and skill costs are multiplied together to calculate the total cost of a proposed job, this
discretization introduces a multiplicative error of at most (1 + ϵ)2 into our cost calculation for the
first option when minimizing in the recursive definition of W (i, c, t). For the other two options,
note that we accumulate time and skill costs additively when chaining tasks together for a single
worker. As c and t are rounded to a power of (1 + ϵ), adding additional (accurate) skill and time
costs and subsequently rounding maintains a multiplicative error of at most (1 + ϵ) on the total
time and skill costs.

We conclude that if we fill in our table for all W (i, c, t) where i ≤ m and c and t are discretized
into powers of (1 + ϵ), rounding down to nearest values of (1 + ϵ) on recursive calls into the table,
we obtain a 1 + O(ϵ) approximation to the optimal solution. An appropriate change of variables
(scaling ϵ by a constant) yields a (1+ ϵ) approximation factor in total runtime O(m2ϵ−2 log2(mB)),
as claimed in Proposition 4.

5 Discussion

5.1 Job-level AI Exposure and the Fragmentation Index

For a single step in isolation, the decision whether or not to deploy AI augmentation depends simply
on whether the manual execution cost exceeds the AI management cost. That is, the optimal choice
of whether to use AI assistance depends only on the AI exposure of the step in question. For two
or more steps, however, the optimal deployment of AI depends on more than the exposure of each
step in isolation. This can arise because of the benefits of automating multiple steps together in
an AI chain. Even if one step can be completed more effectively through manual work, it may be
preferable to automate it as part of a larger collection of steps that can be jointly delegated to AI.
Whether this occurs in the optimal AI strategy depends on the relationship between other nearby
steps in the production process.

Returning to the short-run optimization problem described in (4) and Section 4.1, we can
interpret job-level AI exposure as the extent to which an optimal AI strategy employs AI automation
and augmentation. Intuitively, a run of consecutive steps in the production process that an AI
can perform effectively is a natural candidate for an AI chain. A job that contains such runs of
consecutive steps are therefore likely to benefit most from AI automation. On the other hand, a
job for which AI-friendly steps are separated by intermediate steps that an AI is likely to fail is
less exposed to large-scale automation, even though its task-level exposure to AI may appear high.

Example 1. Consider a job consisting of m steps, where m is even. Each step takes time 5 to
complete manually and has an AI management time of 1, but the steps vary in how difficult they are
for an AI to complete: odd-numbered steps can be successfully completed by an AI with probability
1, whereas even-numbered steps will be successfully completed with probability only 0.1, as shown
below:
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Easy

1

Hard

2

Easy

3

· · · · · · Hard

m–2

Easy

m–1

Hard

m

In this scenario, it is suboptimal to attempt to use AI on any of the even-numbered steps, even as
part of a chain. The optimal AI deployment strategy is to employ AI-augmentation on the odd-
numbered steps (for a cost of 1 each) and perform even-numbered steps manually (for a cost of 5
each), resulting in an overall time cost of 3m.

Example 2. Next suppose that easy and hard steps are not interleaved, but rather the first m/2
steps can each be completed by AI with probability 1 and the last m/2 steps can each be completed
with probability 0.1, as follows:

Easy

1

Easy

2

· · · · · · Easy

m
2

Hard

m
2

+ 1

· · · · · · Hard

m− 1

Hard

m

In this case, the optimal AI strategy chains together the first m/2 steps into a single automated
AI chain, for a combined cost of 1. The remaining m/2 steps are then performed manually. This
results in an overall time cost of 1 + 5m/2, which is strictly less than 3m as long as there are four
or more steps.

To make this intuition more precise, let us return to the short-run optimization problem de-
scribed in (4) and Section 4.1. Recall that in this short-run problem we are fixing a single job
assigned to a worker with a fixed wage, so our focus is on optimizing the time cost of production.
Consider the special case where AI management costs are normalized: tAi = 1 for all i. That is,
each step of production requires the same amount of time to prompt and manage one attempt by
an AI process. Under this assumption, we will define a measure of the dispersion of AI-exposed
tasks in a production process, which we refer to as the fragmentation index of a job. We then show
that the fragmentation index of a job approximates (up to constant factors) the time cost of an
optimal AI strategy for that job. In other words, jobs for which the fragmentation index is high
will tend to yield less benefit from AI automation in the short-term where worker wages and job
boundaries are fixed. Notably, this intuition makes heavy use of the short-run assumption that
worker wages are fixed and independent of task skill requirements; we discuss examples where this
intuition fails when describing long-run effects in Section 5.2.

Intuitively, the fragmentation index is motivated by a hypothetical scenario where a prophet
can “see the future” to determine which tasks would be completed successfully by AI on its first
attempt and which would not. If many tasks in sequence will all complete successfully on the
first try, these are a good candidate for an AI chain. The prophet might therefore chain together
all contiguous sequences of tasks that would all succeed, and perform all other tasks manually.
The fragmentation index is then the expected cost of this strategy, under the assumption that the
prophet’s foresight is correct. Notably, this AI strategy isn’t necessarily optimal even with the
benefit of foresight: a long AI chain with a good probability of success might be optimal even if
the prophet knows that it will fail on the first attempt. However, what we show is that its cost
approximates the cost of the optimal strategy even without foresight.

To define the fragmentation index more formally, consider a random process in which each step
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si succeeds independently with probability qi; any task that does not succeed is said to fail. Write
F for the set of steps that fail, and C = {C1, . . . , Ck} for the random variable representing the
collection of maximal connected components of non-failed steps. The weight of each Cj ∈ C is
defined to be ω(Cj) = min{1,

∑
i∈Cj

tMi }. That is, each Cj has weight 1 unless the sum of the

manual time costs for each of its steps is less than 1 (due to our assumption that AI management
costs are normalized to 1).

Given a realization of C and F , we define the realized fragmentation to be∑
i∈F

min

{
tMi ,

tAi
qi

}
+
∑
Cj∈C

ω(Cj). (5)

The fragmentation index is defined to be the expected value of the realized fragmentation.
Intuitively, we expect the fragmentation index to be lower when highly automatable steps (that

is, those for which the AI are likely to succeed) are clustered together, since a large cluster of
highly automatable steps are more likely to realize as a single connected component when failures
are realized.

We will show that the fragmentation index is within a constant factor of the cost of the optimal
(short-term) AI strategy for a given fixed job’s step sequence.

Proposition 5. Fix a single job with a sequence of m steps S = {s1, . . . , sm}, each with tAi = 1. Let
FI denote its fragmentation index and let OPT denote the minimum time cost over all AI strategies.
Then 1

8OPT ≤ FI ≤ 5
4OPT . If we further assume tMi ≥ 1 for all i, then 1

4OPT ≤ FI ≤ 5
4OPT .

We prove Proposition 5 in Appendix A. The key take-away from Proposition 5 is that jobs
with high fragmentation index—i.e., those for which the expected number of consecutive successful
step executions by an AI is low—will tend to have higher time costs even under optimal use
of AI chaining. A key driver of efficiency gains via AI automation is therefore not simply the
expected number of steps that can be automated effectively, but the number of adjacent steps in
the production process that have high exposure to AI.

An implication of our proof of Proposition 5 is a natural and approximately optimal greedy
algorithm for constructing AI strategies. The algorithm groups tasks into chains as long as the
probability of success is sufficiently high; if the success probability falls too low then the chain is
terminated and a new chain is started (with chains of length 1 converted to manual execution when
appropriate).

5.2 Impact of AI Deployment on Worker Skill and Specialization

While the fragmentation index captures the short-run impact of AI deployment on task completion
time, in the long run AI strategy also alters the skill requirements of workers and the degree of
specialization within the workforce. This can dampen or even reverse the short-run intuition that
gains from AI derive primarily from time savings, as the following example shows.

Example 3. Consider a job consisting of a single step. This step has manual time and skill require-
ments (tM , cM ) = (5, 5). Suppose that, under AI augmentation, this step has an AI management
time of 1 (per attempt), an AI management skill requirement 1, and probability 1/8 of successful
completion. Despite the task taking longer to complete with AI (due to the low likelihood of success
on any individual attempt), the reduced skill requirement of managing the AI process means that it
is firm-optimal to employ AI augmentation.
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The impact of AI on worker skill reflects two common narratives about the impact of AI on work:
first, that AI can automate mundane or repetitive tasks and allow high-skill workers to concentrate
more of their time on meaningful high-skill tasks; second, that AI could lead to deskilling as high-
skilled labor for manual task completion is replaced with low-skill AI management. Our framework
unifies these two perspectives by endogenizing (a) the nature (i.e., time and skill requirements) of
work to be automated and (b) how the AI strategy impacts requisite worker skill. If replacing a
given sequence of production steps in given job with an AI chain is beneficial, in the long term,
then either the total time needed to complete the steps is shortened, the total skill needed to
manage the AI automation is reduced relative to completing the steps manually, or both. For an
example of the latter, a step with low skill requirement but high time requirement (such as Step
2 in Figure 3) may be optimally augmented by AI even when doing so increases the skill needed
for AI management, if the time savings are substantial enough. In this case, the skill required to
complete the same job might increase: AI augmentation can be viewed as complementing worker
capabilities. Alternatively, it may also be beneficial to employ AI on production steps with high
skill requirements (such as Step 1 in Figure 3) even if this results in an AI-assisted task that takes
longer to complete, as long as it requires substantially less worker skill to manage the AI. This can
ultimately lead to a deskilling of the labor force assigned to the job as AI capital substitutes for
high-skilled human work.

This discussion has so far focused on impacts within a single job. Our framework likewise
captures how AI deployment strategy shapes job design and, in particular, patterns of worker
specialization across tasks. Consider again the example from Figure 3, which highlights how hand-
off costs and the structure of what we refer to as tent-pole tasks can influence how production
steps are bundled into specialized jobs. A tent-pole task is a short but high-skill task that sits
immediately next to time-consuming, low-skill ones.11 The second task in Figure 4 is an example
of a tent-pole task.

As AI deployment strategy influences the time and skill profile of tasks, the incentive to spe-
cialize workers likewise changes. To predict the direction of this effect, one hypothesis is that AI
deployment will tend to have a normalizing effect on tasks, reverting both skill requirements and
time requirements toward the mean and making tasks more “square-like” (in terms of our geomet-
ric interpretation of job design costs). If so, and if hand-off time costs remain unaffected, then
(roughly speaking) tent-pole inefficiencies due to grouping tasks together into the same job would
be reduced. This suggests that AI deployment may reduce worker specialization.

Example 4. Consider a two-step production process, with manual skill and time costs (cM1 , tM1 ) =
(2, 4) and (cM2 , tM2 ) = (4, 2) and hand-off cost tH1 = 5. That is, the first step is low-skill but time-
intensive and the second step is high-skill but can be completed quickly. In this example, combining
both steps into a single job (at a labor cost of (2 + 4)(4 + 2) = 36) is strictly worse than separating
into two specialized jobs with a handoff (at a total cost of (2)(4 + 5) + (4)(2) = 26). However, if
each step of production could be augmented separately via AI to yield effective skill and time costs
of (2, 2) for each, then the optimal design combines both augmented steps into a single job at a total

11This juxtaposition creates a classic friction: if a single highly skilled worker performs all adjacent tasks, a
substantial share of their time is spent on low-skill work, whereas assigning the surrounding low-skill tasks to different
workers raises hand-off costs when work passes between them. Historically, this tension has been an important driver
of the division of labor. As AI automation alters the time and skill profiles of individual tasks in the production
sequence, it changes exactly this trade-off, shifting when it is efficient to have a single worker perform a cluster of
tasks versus when specialization across workers remains optimal.
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Figure 4: Illustration of Tent-Pole Tasks

Notes: This figure illustrates tent-pole tasks. The width and height of each rectangle specify the time (t) and human

capital (c) requirements of the task, respectively. Tasks 1 and 3 have a high time cost and low human capital

requirement (wide and short) whereas Task 2, which is the tent-pole task, exhibits a low time cost and high human

capital requirement (narrow and tall). The hand-off time costs (tH) are assumed to be zero for simplicity.

cost of (2 + 2)(2 + 2) = 16, which is better than separating into two distinct jobs (incurring cost
(2)(2 + 5) + (2)(2) = 18).

It is also technically possible in our model for AI to increase the amount of specialization in an
optimal job design. This could happen if AI-augmented steps have higher skill requirements than
the corresponding manual steps, leading to an increased need for high-skill workers. Even if AI
management is assumed to require no more skill than manual completion, an increased deployment
of AI can lead to more responsibilities being combined into a single job, leading to a higher worker
skill requirement, as the following example shows.

Example 5. Consider a different two-step production process, with manual skill and time costs
(cM1 , tM1 ) = (cM2 , tM2 ) = (3, 3) and hand-off cost tH1 = 5. The optimal job design separates these into
two separate jobs at a total cost of (3)(3+5)+(3)(3) = 33, with each job requiring a worker of skill
3. Suppose AI augmentation can allow each step to be completed with an AI management skill of
2, a management time of 1/4, and an AI success probability of 1/8, for a total expected execution
time of (1/4)× (1/8)−1 = 2. In this case, the optimal design employs AI augmentation in each step
and combines the two steps into a single job, resulting in a total cost of (2 + 2)(2 + 2) = 16 and
requiring a worker of skill 4. Note that this is preferable to combining the two steps into a single
AI chain, which would result in a total cost of (2)((1/4)× (1/8)−1 × (1/8)−1) = 32.
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5.3 Non-Linear Impacts of AI Improvements

Improvements to AI technology naturally lead to improvements in the overall cost of production,
but these effects need not be linear. The full economic impact of a disruptive general-purpose
technology can take significant time and investment to materialize, with notable historical examples
ranging from the steam engine to electricity to computers. In each case, a new technology enables
modest short-term improvements to existing production processes, but the full impact is not felt
until large-scale reorganization of production is enabled. This drives a potentially non-monotone
marginal value from technology improvements, where major improvements are only unlocked after
surpassing a threshold of capability at which they become feasible.

Our framework captures such non-monotonicities in the marginal value of technological im-
provements. This arises in our model via optimization over different AI deployment and job design
strategies. One can think of parameter α ∈ (0, 1] in our model as metric of the quality of a general
purpose AI technology, taken to be the probability that a task of normalized difficulty 1 is com-
pleted successfully. We can then model general technology improvements as increasing the value
of α. For a given fixed AI strategy (described by a task sequence T ) and job design (described by
job sequence J ), the total cost can be expressed as a polynomial in (1/α). As a result, the cost of
T and J shifts in a continuous and smooth manner as α increases, with monotone marginal gains
to technology improvements. However, the optimal choice of design (expressed as optimization
problem (3)) involves taking the minimum-cost solution over many possible AI strategies and job
designs. AI strategies with a higher degree of AI chaining will naturally involve higher powers of
1/α in their cost expressions, meaning that they are more sensitive to changes in α and become
preferable only at higher values of α (i.e., as AI becomes more effective as a tool). This naturally
leads to scenarios where the productivity improvements of AI integration are modest at low levels
of quality but can grow sharply past a certain inflection point, as we describe in the following
example illustrated in Figure 5 below.

Example 6. Consider a production process with two steps. The first step is short but high-skill and
difficult for AI tools to perform correctly. Specifically, its manual skill cost is cM1 = 5, its manual
time cost is tM1 = 1, and its hand-off time is 1. Its AI difficulty score, d1, is 6, meaning that an
AI can successfully complete the step with probability q1 = α6. The AI management skill and time
requirements are the same as the manual execution requirements: (cA1 , t

A
1 ) = (5, 1).

The second step is low-skill and timely to execute manually, but easy for AI. It has (cM2 , tM2 ) =
(2, 4) and AI difficulty score 1. The skill needed to manage the AI is also 2, but the time needed to
manage the AI is reduced to 1: (cA2 , t

A
2 ) = (2, 1).

Consider the optimal AI strategy and job design for this example as a function of α, the general
AI quality metric. The costs of different AI strategies are plotted in Panel (a) of Figure 5. For
α < 0.25, it is optimal to complete each step manually as a separate task, and to separate the two
tasks into separate specialized jobs. This incurs a total cost of (5)(1 + 1) + (2)(4) = 18. As this
strategy does not employ AI, the cost is not affected by improvements to α in this range, which is
evident in Panel (b) of the figure.

For α ∈ (0.25, 0.77), the optimal AI strategy changes: it is better to use AI augmentation for
the second step, reducing that step’s total completion cost from (2)(4) to (2)(1/α). As α increases,
the total execution cost drops gradually from 18 (at α = 0.25) to 10 + 2/α ≈ 12.5 (at α ≈ 0.77).
This gradual improvement is visible as a modest slope in Panel (b).

However, once α grows larger than 0.77, the optimal AI strategy and job design changes more
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dramatically. At this point, it is better to combine both steps into a single AI chain, automating
step 1, and to assign the resulting aggregate task to a single low-skill worker. The completion cost
of this strategy is (2)(1/α7). This cost starts at approximately 12.5 at α = 0.77 but drops sharply,
eventually converging to a total cost of 2 at α = 1. This sharp drop indicates substantial marginal
benefits from incremental improvements in AI quality in this region, illustrated by the pronounced
jump in the slope in Panel (b) at α ≈ 0.77.

Figure 5: Cost Analysis of AI Strategies in Example 6

(a) Total Cost by AI Strategy (b) Marginal Benefit of Improving AI Quality

Notes: Panel (a) shows total execution costs under various AI strategies as AI quality α improves. Panel (b) illustrates
the marginal reduction in optimal costs associated with increased AI quality. Dashed vertical lines indicate thresholds
where optimal AI deployment strategies shift.

6 Macro-level Production Function

So far, the model has focused on individual firm decision-making: how a firm allocates production
steps among automation, augmentation, and manual execution, and how its micro-level choices
of task assignment and job design determine internal productivity and costs. Ultimately, how-
ever, our interest extends beyond the firm to the broader economy. Improvements in AI quality
not only alter how individual firms organize production but also affect the composition of inputs
used across the economy and the aggregate relationship between labor, capital, and output. Yet
the firm-level optimization framework developed above prevents direct analysis of these aggregate
effects and also makes our approach distinct from the large literature in which production is mod-
eled directly at the task level and then aggregated to the economy level (e.g., Acemoglu et al.
(2022, 2024); Acemoglu (2025)). To bridge this gap, this section examines whether the micro-level
cost-minimization problem of firms can be aggregated into well-behaved firm- and economy-level
production functions. In particular, we show that the detailed, many-input Leontief representa-
tion of production at the task level can be reduced to a more compact formulation with only a
small number of effective inputs, and that aggregating across heterogeneous firms (in terms of AI
quality level) yields a macro-level production function with a CES form. This provides a tractable
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link between micro-level organization decisions and macroeconomic implications of improving AI
quality.

We begin by showing how a firm’s micro-level decisions can be explicitly represented by a Leon-
tief production function at the task level. Next, we demonstrate how, for the purposes of analyzing
labor allocation within a firm, this detailed task-level production function can be simplified into a
Leontief production function with just two aggregate inputs: skill-adjusted AI management labor
and skill-adjusted manual labor (we will describe what we mean by “skill-adjusted” below). Finally,
we explore how the production functions of numerous individual firms, which differ only in how
they can effectively put the same AI technology into use, can be aggregated into a single, economy-
wide CES production function. In this macro-level representation, the inputs are economy-wide
aggregates of the corresponding micro-level inputs from individual firms, thereby facilitating clearer
insights into the overall labor allocation in the economy.

Before the aggregation analysis, let us first describe the setup of production. A firm uses two
production inputs: (1) skill-adjusted AI management labor (to complete AI-assisted tasks), and (2)
skill-adjusted manual labor (to perform manual tasks). These two types of labor demand different
compensations: executing an AI-assisted task with skill and time cost of one demands wA, while
completing a manual task with similar skill and time requirements commands a compensation of
wM . We call wA and wM the base wage rates for AI management and manual labor, respectively.

Firms use these two inputs to complete tasks. Recall that the skill and time requirements of
tasks are determined by the firm’s AI strategy T , while the aggregate skill requirements of jobs
depend jointly on the AI strategy and job design J . Specifically, the per unit of time compensation
of a worker employed to do tasks of a job is determined by all tasks in that job. Consider Job 1
in Figure 2 for example. The worker assigned to perform Job 1 is required to obtain not only the
skill required for manual Task 1, cM1 , but must also possess the required skill for AI-assisted Task
2, cA2 , as the worker’s total compensation per unit of time is determined at the job level, and equals
cM1 + cA2 . Therefore, the more tasks firm includes in a job, the higher required compensation for
every task in that job.

In order to produce, the firm hires manual labor to perform manual tasks and AI management
labor for AI-assisted tasks. Therefore, the total compensation of a job will be a weighted average
of skill costs of the job’s tasks, with weights being the base wage rates of each type of labor.
Specifically, the compensation for job J will be:

wM

 ∑
TM
b ∈J

cMb

+ wA

∑
TA
b ∈J

cAb

 , (6)

which is composed of the sum of contributions of skill costs from its manual tasks denoted by set
TM
b (each weighted by wM ) and its AI-assisted tasks denoted by set TA

b (each weighted by wA).
12

Next, we define skill-adjusted labor, which is the smallest unit of work in our analysis. Let J(b)
denote the job to which task b belongs, and E(b) be the mode of execution of task b (i.e., E(b) = M
if b is a manual task, or E(b) = A if b is an AI chain). Define the skill-adjusted time requirement

12This formulation is essentially equivalent to the original definition of wage in (1), as pointed out in Footnote 8.
If we multiply each skill cost in (6) by its respective base wage rate and redefine the task’s skill cost as the resulting
product, we arrive at the original formulation given by (1). The formulation in (6) allows tasks to contribute differently
to the job’s wage depending on their mode of execution and type of labor that need to perform them.
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of task b as

τb =
wM

(∑
TM
ℓ ∈J(b) c

M
ℓ

)
+ wA

(∑
TA
ℓ ∈J(b) c

A
ℓ

)
wE(b)

tb.

Note that the fraction appearing behind tb represents an effective skill adjustment factor, as the
numerator captures the total compensation of the job task b belongs to, while the denominator
normalizes by the base wage rate for the specific mode of execution of task b. The resulting
fraction thus has units of skill intensity. This characterization becomes useful later as it allows
expressing the (expected) wage bill paid for task b simply as wA τb α

−db if it is AI-assisted or as
wM τb if it is executed manually.

6.1 Within-Firm Aggregation: Leontief to Leontief

We now consider the firm’s production. To produce output, each firm must complete requirements
of all m production steps s1, . . . , sm. This naturally results in a Leontief production structure with
multiple inputs.13 Although firms choose whether to execute each step manually or by the help of
AI, we show that analyzing labor allocation can be simplified. Specifically, production function of
the firm can be represented by a Leontief function with only two firm-level aggregate inputs: AI
management labor and manual labor.

Suppose the firm solves the long-run cost minimization problem (3) for a given AI quality level
α, and obtains the optimal AI strategy T and job design J . Let |T | = n, implying the original
m production steps are organized into n distinct tasks, and |J | = p, indicating these n tasks are
grouped into p jobs. Given the fixed AI strategy, the execution mode for each production step is
predetermined. This lets us consider and work directly with tasks rather than individual steps.
Furthermore, with the job design held fixed, each firm takes the job boundaries and the total skill
requirements within jobs as given.

We assume hand-offs are performed manually by the worker who completes the final task of
each job. This allows us to simplify the analysis in two ways: (1) Since job design is fixed, we know
exactly which steps occur at the job boundaries and thus incur hand-off time costs. Therefore, hand-
off of job Jj can be treated as a standalone, human-executed task with time requirement tH(Jj) and
skill requirement equal to the total skill requirement of job Jj .

14 (2) The order of tasks—including
the newly defined hand-off tasks—can be rearranged within the production sequence. Specifically,
we relabel tasks such that tasks 1 to k are AI-assisted and thus require AI management labor, while
tasks k+1 to n, along with the hand-off tasks n+1 to n+p−1, are executed manually and require
manual labor.15

The firm’s task-level production can be expressed in the following Leontief form:

x = min

{
l1

τA1 α−d1
, · · · , lk

τAk α−dk
,
lk+1

τMk+1

, · · · , ln
τMn

,
ln+1

τH(J1)
, · · · , ln+p−1

τH(Jp−1)

}
. (7)

The x on the left-hand side represents the firm’s output while lb is the amount of labor assigned to
task b. All other variables remain as previously defined.

13Different AI deployment strategies and job designs lead to different input proportions but share the same funda-
mental Leontief form.

14Denote the skill-adjusted time cost of hand-off task of job Jj with τH(Jj).
15Recall that the final job p requires no hand-off by definition. The last hand-off thus occurs at the end of job

p− 1.
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Since the AI strategy and job design are fixed the required amount of skill-adjusted time to
spend on each task in the denominators of (7) are fixed, and the firm takes them as given. In
equilibrium, allocation of labor to tasks satisfies

x =
l1

τA1 α−d1
= · · · = lk

τAk α−dk
=

lk+1

τMk+1

= · · · = ln
τMn

=
ln+1

τH(J1)
= · · · = ln+p−1

τH(Jp−1)
.

Notice that the ratio of labor allocated to any two tasks a and b is independent of output level and
wage rates (regardless of whether tasks a and b are executed manually or by the help of AI), and
solely depends on their relative skill-adjusted time requirements, which are fixed given T and J .
The fixed ratio of labor inputs implies that the rate of substitution between any pair of tasks is
independent of the labor allocated to other tasks:

∂

∂lz

(
∆x
∆la
∆x
∆lb

)
= 0, ∀z ̸= a, b. (8)

A necessary and sufficient condition to aggregate the firm’s production function from a Leontief
with one input per task into a Leontief with (firm-level) aggregate AI management labor and manual
labor is that the rate of substitution between any two tasks within the same aggregate input type is
independent of all tasks in the other aggregate input type (Leontief, 1947; Fisher, 1965; Felipe and
Fisher, 2003). In other words, the relative amount of labor allocated to any two human-executed
(AI-managed) tasks should depend exclusively on tasks within the human-executed (AI-managed)
group.

The condition expressed in (8) satisfies the aggregation requirement above.16 Thus, the firm’s
production function can be represented as:

x = min

{
ᾱ lA
τA

,
lM
τM

}
. (9)

Here, lA and lM represent respectively the firm-level aggregate AI management labor and manual
labor. Moreover, the aggregate skill-adjusted AI and manual time requirements, τA and τM , are
defined as the sum of skill-adjusted time requirements of tasks in their respective groups:

τA =

k∑
b=1

τAb , (10)

τM =

p−1∑
j=1

τH(Jj) +

n∑
b=k+1

τMb . (11)

Finally, ᾱ is the firm’s effective AI quality level defined as

ᾱ =

∑k
b=1 τ

A
b∑k

b=1 τ
A
b α−db

, (12)

16In fact, this condition is stricter than necessary. It not only guarantees labor independence across aggregated
input types, but also imposes a stronger condition: that the rate of substitution between tasks within the same
aggregate input type is independent even of other tasks within the same aggregate type.
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so that the following relationship holds:

τA
ᾱ

=
k∑

b=1

τAb α−db .

In short, (9) allows us to analyze labor allocation using the simpler two-input Leontief pro-
duction function for a given AI strategy T and job design J . This firm-level aggregate Leontief
function implies the equilibrium condition:

x =
ᾱ lA
τA

=
lM
τM

. (13)

The representation in (9) helps us gain clearer insights into the allocation between manual and AI
management labor at the firm level by removing the need to deal with the complex, many-input
production function (7) at the level of individual tasks.

6.2 Cross-Firm Aggregation: Leontief to CES

Next, we analyze whether Leontief production functions of many firms can be collectively rep-
resented by a single economy-wide production function, where each input in the macro function
aggregates the corresponding inputs from the micro functions. To do so, we draw on the extensive
literature on aggregation theorems in production theory, which establishes conditions for the ex-
istence of an aggregate production function based on individual firms’ production functions. The
central idea is to introduce an appropriate form of heterogeneity across firms, allowing micro-level
production functions to be smoothed into a well-behaved aggregate function (see Sato (1975), Chap-
ters 2 and 4, for existence conditions.).17 While most existence results in this literature do not yield
a closed-form functional representation, we show here that under certain conditions on firm het-
erogeneity, firm-level Leontief production functions can be aggregated into an economy-wide CES
production function.

Consider a unit mass of firms in the economy, each producing output with AI management
labor, human labor, and capital. We assume capital is a fixed input, so firms make labor decisions
conditional on their given capital stock. Moreover, we impose a Leontief structure between capital
and labor inputs, normalizing the production process so that exactly one unit of capital is required
per unit of output produced.18 Firms do not know their individual effective AI quality level before
production occurs; instead, they share a common prior belief regarding the distribution from which
these quality levels are drawn.

Production unfolds in two stages. In the first stage, firms solve the long-run cost minimization
problem (3), committing to an AI deployment strategy T and a job design J based on their expected
AI quality levels. Since firms hold the same expectations about the distribution of effective AI
quality, they choose identical AI strategies and job designs. In the second stage, firms learn their

17For instance, Houthakker (1955) studies aggregation from micro Leontief functions to a macro Cobb-Douglas
function; Levhari (1968) investigates aggregation from micro Leontief functions to a macro CES function; and Sato
(1969) explores aggregation from micro CES to macro CES functions. See Baqaee and Farhi (2019) for a broader
formulation of this problem.

18This normalization can be interpreted as assuming identical capital productivity across firms. Since we introduce
firm-level heterogeneity through variations in AI quality, we abstract away from additional sources of heterogeneity
across firms.
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realized effective AI quality levels, hire the required labor and capital, and begin production.19

The resulting Leontief production function, determined by the previously selected AI strategy, job
design, and the firm’s realized effective AI quality, takes a form similar to (9).

This two-stage structure mirrors realistic firm behavior. Firms initially decide how to struc-
ture operations and post job vacancies. Only after making these structural commitments do they
hire workers and acquire machines to begin production. Once hiring occurs, firms discover the
actual productivity levels of inputs, which necessitates operating under their previously chosen
organizational structures.

In what follows, we demonstrate that the heterogeneity in effective AI quality level can be
structured so that micro-level Leontief production functions (9) aggregate into a macro-level CES
production function, in which the CES inputs are aggregates of the micro-level inputs (Levhari,
1968). Suppose specifically that the macro-level production function takes the form:

X = (θAAρ + θM Mρ + (1− θA − θM )Kρ)
1
ρ , (14)

where X represents the (economy-wide) aggregate output, A denotes aggregate AI management
labor, M denotes aggregate manual labor, K is aggregate capital, and parameters θA and θM repre-
sent the weights of corresponding inputs. Since the measure of firms in the economy is normalized
to 1, aggregate capital is also normalized to 1, making the third term in (14) effectively constant
at 1− θA − θM .

To link the macro production function above to the micro production functions, we must relate
aggregated firm-level inputs lA and lM from (9) to their corresponding economy-wide aggregates
A and M in (14). This requires either determining the macro production function parameters
from the distribution of heterogeneity, or specifying the form of heterogeneity given a set of macro
production function parameters. We adopt the latter approach and derive the output probability
density function in terms of effective AI quality, denoted by ϕ(ᾱ), as a function of θA, θM , ρ.
Throughout, we assume that ρ < 0 (which implies elasticity of substitution σ < 1), indicating that
macro-level production exhibits some degree of complementarity between aggregate inputs.

Normalize the output price to p = 1, so that wA and wM can be interpreted as real wage rates
for a unit of skill-adjusted AI management and manual labor, respectively. A firm produces only
if it earns nonnegative profits:

wA lA + wM lM ≤ x.

Substituting for lM and x from (13) into the profitability condition yields:

wA lA + wM
τM ᾱ lA

τA
≤ ᾱ lA

τA
.

Rearranging terms and canceling lA gives the lower bound of firms’ effective AI quality level:20

ᾱ ≥ wA τA
1− wM τM

.

This lower bound implies that only firms with realized effective AI quality level above this threshold
will produce in equilibrium and others exit the market. Moreover, observe from (12) that for db ≥ 0
the upper bound of ᾱ is 1 and is achieved when α → 1−. Therefore:

wA τA
1− wM τM

≤ ᾱ ≤ 1. (15)

19As production depends on the realized effective AI quality level, ᾱ also determines firms’ sizes.
20We assume the parameters wA, wM , τA, τM are such that 0 < (wA τA)/(1− wM τM ) < 1.
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Let ϕ(ᾱ) be the distribution of output across firms according to their effective AI quality level.
A firm with effective AI quality ᾱ thus produces output x = ϕ(ᾱ) by definition. From equation
(13), it directly follows that the AI management labor and manual labor used by this firm are:
lA = (τA/ᾱ)ϕ(ᾱ), and lM = τM ϕ(ᾱ). Consequently, aggregate outputX, aggregate AI management
labor A, and aggregate manual labor M can be expressed as:

X =

∫ 1

wA τA
1−wM τM

ϕ(ᾱ) dᾱ, (16)

A =

∫ 1

wA τA
1−wM τM

τA
ϕ(ᾱ)

ᾱ
dᾱ, (17)

M =

∫ 1

wA τA
1−wM τM

τM ϕ(ᾱ) dᾱ. (18)

Substituting the aggregated variables from the micro-level equations (16, 17, 18) into the ag-
gregate production function (14), we obtain:

∫ 1

wA τA
1−wM τM

ϕ(ᾱ) dᾱ =

(
θA

(
τA

∫ 1

wA τA
1−wM τM

ϕ(ᾱ)

ᾱ
dᾱ

)ρ

+ θM

(
τM

∫ 1

wA τA
1−wM τM

ϕ(ᾱ) dᾱ

)ρ

+ (1− θA − θM )

) 1
ρ

.

(19)
Solving for ϕ(ᾱ) in terms of θA, θM , ρ we get the following distribution for effective AI quality:

ϕ(ᾱ) =
(1− θA − θM )

1
ρ
(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ

1− ρ
(ᾱ)

1
ρ−1

[
1− θM τρM −

(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ (ᾱ)

ρ
ρ−1

]− 1+ρ
ρ

.

(20)
See Appendix B for derivation details.

This completes the production function aggregation procedure. The derived distribution (20)
characterizes firm-level heterogeneity in the effective AI quality level required to support a macro
CES production function of the form (14), with economy-wide aggregate AI management and man-
ual labor inputs and parameters θA, θM , ρ, obtained from micro-level Leontief production functions
of the form (9).

The aggregation results in this section provide a foundation for linking micro-level technology
deployment and organizational choices to macroeconomic production frameworks. By showing
how heterogeneous firms with step-by-step Leontief technologies and endogenous task boundaries
can be represented by a CES aggregator, our framework offers a micro-founded rationale for using
aggregate CES production functions to study labor demand, substitution patterns, and productivity
in economies adopting new AI technologies. This connection clarifies how firm-level decisions about
automation, augmentation, and job design scale up to shape aggregate technological change.

7 Empirical Evaluation

In this section, we empirically test three predictions of our model: (1) AI-executed steps tend to
appear next to each other in the production sequence, forming AI chains; (2) occupations in which
AI-suitable steps are more dispersed have fewer AI-executed steps; and (3) the AI-execution status
of a step’s neighbors affects the likelihood that the step itself is executed by AI.
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For our analysis, we construct a task-level dataset that records three attributes of each task:
its AI exposure status (exposed or unexposed to AI), its realized mode of execution (manual, AI-
augmented, or AI-automated), and its position in the production sequence. To create this dataset
we combine data from four sources:

1. The O*NET 27.3 Database (National Center for O*NET Development, 2023),

2. Human-generated labels for AI exposure of O*NET tasks from Eloundou et al. (2024),

3. Realized AI execution mode of O*NET tasks from the Anthropic Economic Index (Handa et
al., 2025),

4. A GPT-generated task ordering for each O*NET occupation.

The structure of our theoretical framework closely aligns with the structure of the O*NET
dataset. Each production step in the model corresponds to an O*NET task, and each job corre-
sponds to an O*NET occupation. In the absence of AI, a step (that is, an O*NET task) is executed
manually and maps directly into a task under the model’s definition. Thus, without AI, an O*NET
task can be viewed as both a step and a task, which matches the standard treatment of tasks in the
O*NET dataset. Later when we discuss AI execution, however, multiple steps, corresponding to a
subset of O*NET tasks, may be chained together and executed jointly by AI, forming a composite
task per the model’s definition. Throughout this section, we use the terms step, O*NET task, and
task interchangeably and expect the reader to keep these distinctions in mind. We similarly use
the terms job and occupation interchangeably without restating the mapping each time.

We use the May 2023 release of O*NET. This version contains roughly 18,000 tasks assigned to
more than 850 U.S. occupations. For AI exposure measures, we use human-generated labels from
Eloundou et al. (2024). Unless explicitly mentioned otherwise, in all analyses we treat tasks with
a human-assigned E1 label as exposed to AI and those with E0 or E2 labels as unexposed to AI.21

This gives a conservative measure of exposure to AI for all O*NET tasks.
To obtain AI execution labels, we draw on Anthropic’s Economic Index dataset (Handa et al.,

2025), which classifies millions of Claude conversations into six categories: “Validation”, “Task
Iteration”, “Learning”, “Directive”, “Feedback Loop”, and “Filtered.” Conversations in the first
three categories (Validation, Task Iteration, Learning) are treated by Anthropic as AI-augmenting
activities, whereas those in Directive and Feedback Loop are recognized as AI-automating activities.
The sixth category, Filtered, corresponds to conversations that either could not be classified or
whose actual category could not be disclosed for privacy reasons.

Anthropic reports the share of matched conversations falling into each of the six categories for
a subset of O*NET tasks. In total, conversations are linked to 3,364 tasks, of which 1,017 have
100% of their conversations filtered, leaving 2,347 tasks with at least one non-filtered conversation.
Following Anthropic’s definitions of AI-augmenting and AI-automating activities, we assign each of
these 2,347 tasks an AI execution label based on the majority share of its non-filtered conversations
across the augmenting versus automating categories. Appendix Table C.2 provides several example
tasks labeled using this procedure.

Finally, we treat tasks that do not appear in the Anthropic dataset, as well as those with 100%
filtered conversations, as manual tasks. Figure 6 shows the distribution of task execution modes

21Eloundou et al. (2024) define E1 tasks as those that an AI can perform in at least half the time required by a
human while preserving human-level output quality. E2 tasks meet the same time-saving and quality thresholds but
require additional software or tools to fully leverage AI capabilities. Any task that is neither E1 nor E2 is labeled E0.
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in our dataset. Of the 872 occupations, 605 (69%) contain at least one AI-exposed task and 555
(64%) contain at least one AI-executed task. Figure 7 shows the distribution of occupations by the
fraction of their tasks that are exposed to AI (left) and executed by AI (right).

Figure 6: Distribution of Modes of Task Execution in the Dataset

Notes: The automation and augmentation labels are drawn from Anthropic’s Economic Index dataset, and the
universe of tasks comes from the May 2023 O*NET release.

Figure 7: Distribution of Share of Occupation Tasks Exposed to and Executed by AI

(a) AI Exposure (b) AI Execution

Notes: Percentages above bars denote fraction of observations corresponding to that bar out of all 872 occupations.

As the final input into our analyses, we generate a workflow sequence for every O*NET occu-
pation. Specifically, we prompt GPT-5-mini through Expected Parrot (Horton and Horton, 2024)
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with the complete set of tasks within each occupation and ask it to determine the most reasonable
sequential ordering in which these tasks would be performed in practice.22 Appendix Figures D.2,
D.3, and D.4 show the resulting task sequences for three occupations: Computer Programmers with
a high share of its tasks executed by AI, Public Relations Specialists with a moderate share, and
Electronic Equipment Installers and Repairers, Motor Vehicles with no tasks executed by AI.

We validate these GPT-generated sequences in two ways. First, Data Appendix F demonstrates
that alternative prompts produce reasonably consistent orderings: for a random 10% subset of
occupations, we find high overlap (average Kendall’s τ ≈ 0.6) in pairwise task orderings across
meaningfully different prompts, with no systematic differences across occupation types that are
important for the purposes of our analyses. Second, and more importantly, throughout our empirical
analyses we compare these sequences against placebo datasets generated by randomly reshuffling
task positions within each occupation and find that the patterns in GPT-generated data differ
significantly from those in placebo datasets, indicating that GPT captures meaningful workflow
structure rather than arbitrary task orderings.

A noteworthy feature of these task sequences is that the realized execution modes are broadly
consistent with, but do not perfectly satisfy, our model’s definition of AI chains. In particular,
in the model an automation task can only be followed by another AI-executed task, either auto-
mated or augmented, whereas in the data we occasionally observe an automation task followed
by a non-AI (i.e., manual) task. Task 5 in Computer Programmers’ occupation (Appendix Figure
D.2) and Task 3 in Public Relations Specialists’ occupation (Appendix Figure D.3) are two such
instances. This pattern is a consequence of natural definitional differences between our model and
the Anthropic data. In particular, the automated versus augmented distinction in our model is
defined by production sequencing and task dependencies, whereas the Anthropic classifications are
based on task-level exposure and feasibility and are agnostic to workflow position. As a result,
tasks labeled as automated in the data may still be followed by manual steps, leading to appar-
ent deviations from the model’s sequencing restriction without contradicting its underlying logic.
Therefore, when considering the structure of AI chains in the remainder of this section, we do not
distinguish between tasks labeled as automated versus augmented in the empirical data; rather, we
treat both labels as indicating AI exposure.

Before discussing the findings, it is worth emphasizing two points about the relevance of our
results. First, note that we use a conservative measure of AI involvement in task execution. Recall
that we label tasks with fully filtered conversations as manual, even though we know that all of them
were executed in some way using Claude. These tasks account for roughly one third of all Anthropic-
mapped tasks, and excluding them limits our statistical power. Nevertheless, the remaining two
thirds prove sufficient for revealing the patterns predicted by our framework, suggesting that what
we report should be viewed as a conservative signal of potentially much stronger effects.

A second concern is that workers may use different AI tools for different purposes, for example
Claude for writing and ChatGPT for coding, which could potentially undermine our results. While
we cannot directly rule out such heterogeneous tool use given that we only observe Claude usage,
our analyses are not tied to particular industries, occupations, or tasks, which makes them less
vulnerable to missing isolated pockets of tool-specific usage.23 Nevertheless, wherever applicable,

22The prompt used to generate task sequences is given in Appendix E.
23For our results to be entirely spurious, one would have to believe not only that no one used Claude for a large subset

of tasks during Anthropic’s sample period but also that this missing class of tasks has distinctive characteristics, such
as workflow position or AI-suitability, that differ from other tasks for which Claude is used across the economy. We
do not have a reason to believe this is the case. If anything, specialization across tools would imply that Anthropic’s
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we verify that our results are not driven by any narrow subset of occupations or tasks. The patterns
we document appear consistently across broad occupation groups, even if somewhat stronger in
some groups than others, reflecting heterogeneous impacts of AI. Finally, while we do not claim
that these relationships are causal, taken together they provide strong suggestive evidence that the
mechanisms highlighted by our model are relevant in practice and that our findings reflect broad
patterns of AI execution rather than Claude-specific usage.

7.1 Prediction #1: Tendency to Have Runs of Consecutive AI-executed Tasks

The first prediction of the model that we test is that AI steps tend to appear in contiguous blocks
to leverage cost savings from forming longer AI chains, rather than being randomly placed in the
workflow. This prediction follows from our definition of AI chains (Definition 4), which requires
every automated step to be followed by another automated or augmented step, and from the
fragmentation argument, which suggests that for a given level of AI quality longer AI chains are
more likely to emerge when AI-easy steps are clustered together in the workflow (see Examples 1
and 2 in Subsection 5.1).

Instances of this pattern are evident in example task sequences shown in Appendix Figures D.2
and D.3. To test this systematically, we compute the average AI chain length and the average
number of AI chains per occupation and compare them with two sets of placebo reshuffles of the
original dataset. In the first placebo, we randomize the positions of tasks within each occupation’s
task sequence whereas in the second we randomize the assignment of AI execution labels across
tasks in the entire dataset.

These placebo tests serve two purposes. First, and most importantly, because we do not have
an external benchmark for these statistics, they verify that the patterns we observe in the actual
data are meaningful rather than artifacts of randomness. Second, each placebo targets a distinct
concern about our dataset. The randomized task position placebo tests whether the GPT-generated
workflow sequences contain meaningful structure or behave like random permutations of tasks
within occupations, while the execution label reassignment placebo tests whether Anthropic’s AI
execution labels are randomly scattered across tasks or instead exhibit meaningful co-occurrence
within occupations.

For measurement, recall that we treat all automated and augmented tasks as a single type of
AI task, with any consecutive run of AI-executed tasks constituting an AI chain. We adopt this
modified definition for two reasons. First, given the limited number of automated tasks overall, our
power to meaningfully measure chains under the strict definition of the model is limited. Second,
because some automated tasks appear out of order, the reshuffling exercises mechanically place
these tasks next to other AI tasks and artificially inflate measured chain lengths in the placebo
datasets. Because it is already difficult to meaningfully identify “real” AI chains under the strict
definition, the random assignment causes placebo AI chains to occur too frequently, making it harder
to distinguish actual chains from artificial ones induced by out-of-order AI automation tasks. In
other words, the out-of-order automation tasks not only fail to contribute to real AI chains but also
cause over-representation of AI chains in placebo tests once they appear next to other AI tasks in
random permutations. Thus, treating all automated and augmented tasks symmetrically yields a
more sensible measure of AI chains given our data limitations.

data might understate the true set of AI-executed tasks in the economy, which would primarily reduce our statistical
power rather than generate artificial patterns.
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Given this modified definition of AI chains, the average chain length in the original dataset
is 1.45, and the average number of AI chains per occupation is 2.1. Figure 8 plots the observed
values in the actual dataset alongside histograms of the same two statistics calculated from 1,000
task position reshuffles (Panel A) and 1,000 random execution label assignments (Panel B) of the
original dataset. Comparing the observed average AI chain length with the distributions generated

Figure 8: Average Length and Average Count of AI Chains: Actual versus Placebo Datasets

Panel (A): Random Task Position Assignment

Panel (B): Random Execution Label Assignment

Notes: Red dashed lines show the observed average AI chain length (orange graphs on the left) and average AI-chain
count (blue graphs on the right) in the actual dataset under a more lenient definition of AI chains. Panel (A) shows
the histogram of the two statistics for 1,000 placebo datasets in which the positions of tasks within each occupation
are randomized. Panel (B) shows the histogram of the two statistics for 1,000 placebo datasets in which the execution
labels of tasks in the entire dataset is randomized. The percentile of the reshuffled distributions in which the observed
value falls is reported in the label of the observed value in each graph.

by random task position and execution label assignments in the graphs on the left, we see that the
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average AI chain length in the original data is noticeably larger than in both placebo distributions.
This indicates that the AI-executed tasks tend to cluster within occupations, forming longer AI
chains than would arise under either type of random assignment. The results for the number of AI
chains in the right-hand graphs tell a consistent story. Holding fixed the number of AI-executed
tasks in the dataset, longer chains necessarily imply fewer separate chains. Accordingly, the right-
hand graphs show that the observed number of AI chains per occupation is meaningfully smaller
than what would be expected under random assignment in either case.

These findings also alleviate two potential concerns regarding the structure of our dataset. In
both placebo tests, the average AI chain length and the number of AI chains observed in the actual
data lie at the extreme tails of the placebo distributions, at the 99.9 and 0.1 percentiles respectively.
First, this implies that the GPT-generated workflow sequences are not arbitrary. If the generated
sequences were random, the average AI chain length and the number of AI chains would lie closer
to the center of the distributions generated by arbitrary within-occupation reordering of tasks.
Second, the results indicate that the clustering of AI-executed tasks in the Anthropic data is not
driven by chance co-occurrence of execution labels, but instead reflects systematic patterns within
occupations across the economy. Together, these results show that the observed patterns of AI
chaining capture meaningful workflow structure rather than artifacts of random task ordering or
random AI execution label assignment.

7.2 Prediction #2: Dispersion of AI-able Tasks Affects AI Execution Outcomes

The second prediction of the model that we test is that the extent of realized AI execution in an
occupation is determined not just by the AI exposure status of its steps, but also by how clustered
or dispersed those AI-able steps are in the workflow. To examine this, we ask whether occupations
with similar shares of their tasks exposed to AI exhibit different shares of realized AI-executed
tasks depending on how dispersed their AI-able tasks are in the production sequence. Notably, this
level of dispersion is related to the fragmentation index from Section 5.1; we will make use of a
slightly modified metric (which we call the empirical fragmentation index, defined in more detail
below) that can be calculated from our dataset. Specifically, we estimate the following regression:

ai executiono = β0 + β1 ai exposureo + β2 empirical fragmentation indexo + εo, (21)

where ai executiono is the share of tasks executed by AI in occupation o, ai exposureo is the share
of AI-exposed tasks, and empirical fragmentation indexo measures how dispersed the AI-able tasks
are across the occupation’s workflow.

The model predicts that occupations with higher AI exposure should have a higher share of
steps executed by AI (β1 > 0). Conditional on exposure, it also predicts that when AI-able steps are
more dispersed in the workflow, the share of realized AI-executed steps should be lower (β2 < 0).
The intuition is that, for a given level of AI quality (parameter α in the model), AI chains are more
likely to form when AI-easy steps appear next to each other, as discussed in Examples 1 and 2 of
Subsection 5.1. When such clustering occurs, nearby steps that would otherwise remain manual
may instead be automated as part of a chain.

To construct an empirical measure of fragmentation, we abstract from heterogeneity in tasks’
underlying cost profiles, which are unobserved in our data, and focus solely on their positioning
within the workflow. We define an occupation’s empirical fragmentation index (EFI) as follows.
Assuming all AI-exposed steps turn into AI-executed tasks, empirical fragmentation is the ratio
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Figure 9: Relationships Between Occupational AI Exposure, Empirical Fragmentation, and AI
Execution

(a) Empirical Fragmentation vs. AI Exposure (b) AI Execution vs. AI Exposure

Notes: These graphs show how the fragmentation of AI-able tasks within an occupation’s workflow shapes the
conversion of AI-exposed tasks into AI-executed tasks. Each bin represents a single O*NET occupation in both
panels. Panel (a) plots version 2 of the empirical fragmentation index against the share of AI-exposed tasks, whereas
Panel (b) plots the share of realized AI-executed tasks against the share of AI-exposed tasks. All three highlighted
occupations have 25 tasks in their production sequence and have 32% of their tasks exposed to AI.

of the number of potential tasks in the sense of our theoretical framework to the total number of
steps in the occupation, which is fixed and is measured by the raw count of O*NET tasks in that
job. The following example clarifies the definition. Suppose an occupation has five O*NET tasks.
If none of the five tasks are exposed to AI, then the number of tasks in the theoretical sense is five,
and the EFI equals 5/5 = 1. If instead two consecutive O*NET tasks are exposed to AI and can
potentially form an AI chain when all AI-exposed tasks turn into AI-executed tasks, the number of
tasks in the model falls to four and the EFI becomes 4/5 = 0.8. Thus, the empirical fragmentation
index decreases as more AI-exposed steps can potentially be consolidated into longer AI chains.

For the calculation of EFI, we treat all E1-exposed tasks as identical for the purpose of potential
chaining and assume that all AI-exposed tasks could, in principle, be executed by AI. Because only
14% of tasks in our dataset are E1-exposed, we also consider a broader definition of AI-able tasks
when computing the empirical fragmentation. Specifically, we expand the set of AI-able tasks that
can form AI chains to include both E1- and E2-exposed tasks, which together account for 44%
of all tasks in the dataset. This expansion allows us to capture a wider range of tasks that may
plausibly convert from AI exposure to AI execution and yields a more informative measure of AI-
able task fragmentation. Accordingly, we construct two versions of the empirical fragmentation
index. Definition 1 is a stricter measure that permits only E1-exposed tasks to form AI chains.
Definition 2 allows a broader set of AI-exposed tasks, including both E1- and E2-exposed tasks, to
potentially form AI chains and therefore reflects a more lenient mapping from exposure to execution.

Figure 9 visualizes the relationship between occupational AI exposure, empirical fragmentation,
and realized AI execution. Panel (a) plots the second definition of the empirical fragmentation index
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against the share of occupation tasks exposed to AI, while Panel (b) plots the realized share of tasks
executed by AI against occupation-level AI exposure. The bins for three selected occupations are
highlighted: First-Line Supervisors of Firefighting and Prevention Workers, Sales Engineers, and
History Teachers. We focus on these three occupations for illustrative purposes, as they all contain
the same number of tasks in their workflow, namely 25, and have 32% of their tasks exposed to AI.

Despite having identical exposure shares, these occupations differ in the dispersion of their
AI-exposed tasks, as shown in Panel (a). In line with the model’s prediction, these differences
in dispersion translate into differences in realized AI execution outcomes, as shown in Panel (b).
Specifically, the more clustered AI-exposed tasks are within an occupation (corresponding to a
lower EFI), the larger is the share of its tasks executed by AI.

To generalize the patterns illustrated in the figure, we estimate regression (21) using the two
exposure-based empirical fragmentation measures. The results are reported in Table 3. For each

Table 3: Role of AI-able Task Fragmentation in Determining AI Execution Outcomes

EFI Definition 1 EFI Definition 2

(1) (2) (3) (4) (5) (6)

AI Exposure 0.66*** 0.20** 0.18** 0.33*** 0.14** 0.12**

(0.08) (0.08) (0.08) (0.06) (0.06) (0.06)

Empirical Fragmentation Index 0.04 -0.15 -0.01 -0.23*** -0.21*** -0.14***

(0.20) (0.16) (0.16) (0.03) (0.04) (0.04)

R-squared 0.31 0.63 0.73 0.37 0.66 0.74

Adj. R-squared 0.31 0.62 0.70 0.37 0.65 0.71

Observations 872 872 872 872 872 872

SOC Group Fixed Effect Major Minor Major Minor

Clustered standard errors in parentheses. ∗ : p < 0.1, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01.

Notes: This table shows that occupation-level AI execution outcomes depend not only on the overall exposure of
tasks to AI, but also on where AI-able steps are situated within the production sequence. The table reports results
from estimating regression (21). The dependent variable in all specifications is the share of steps executed by AI in an
occupation (ai execution). The variable “AI Exposure” denotes the share of AI-exposed (E1) steps in the occupation,
while the “Empirical Fragmentation Index” captures how dispersed AI-able steps are across the occupation’s workflow.
Definition 1 measures fragmentation based on potential AI chains formed exclusively by E1-exposed tasks, whereas
Definition 2 measures fragmentation based on potential chains formed by both E1- and E2-exposed tasks.

definition, we estimate three specifications: without additional controls, with SOC major group
fixed effects, and with SOC minor group fixed effects. We include SOC fixed effects to ensure that
the estimated relationships are not driven by a narrow subset of occupation families. Across speci-
fications, we find that a 10 percentage point increase in occupation-level AI exposure is associated
with a 1.2 to 6.6 percentage point increase in the share of occupation tasks executed by AI. Con-
sistent with the model’s prediction, the coefficient on the empirical fragmentation index is negative
in nearly all specifications, indicating that greater dispersion of AI-able steps is associated with
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lower realized AI execution at the occupation level, even after controlling for occupation-level AI
exposure. The only exception arises when we use the stricter fragmentation measure in Definition 1
without SOC controls in Column (1). Under this conservative measurement of the hypothetical
exposure-to-execution mapping, the fragmentation estimates are imprecise and statistically insignif-
icant because the limited number of E1-exposed tasks sharply restricts the set of steps that can
potentially form an AI chain. When we instead use the more permissive measure in Definition 2,
which allows a broader set of AI-exposed tasks to form potential chains when computing fragmen-
tation, the estimated coefficients on EFI are negative and statistically significant at the 1% level
across all specifications.

To ensure that our results are not driven by how fragmentation is measured using the AI
exposure classifications of Eloundou et al. (2024), we repeat the analysis as a robustness check
using two additional measures of task fragmentation constructed directly from realized AI execution
outcomes, rather than from AI-exposed tasks. The corresponding regression results are reported
in Appendix Table C.1, with complementary visual evidence provided in Appendix Figure D.5.

By construction, the execution-based EFI measures are mechanically related to the share of
tasks executed by AI. Holding the task sequence fixed, an additional AI-executed task necessarily
increases the occupation’s AI execution share while weakly reducing its EFI.24 As a result, these
measures mechanically amplify the negative relationship between AI execution and fragmentation in
the regression, as reflected in the estimated coefficients on the EFI reported in Appendix Table C.1.
Accordingly, they are not intended to provide an independent characterization of the relationship
between task fragmentation and AI execution.

Instead, these measures serve as a diagnostic of the form that AI adoption takes within oc-
cupations. The model predicts not only that greater clustering of AI-able tasks facilitates higher
overall AI execution, but also that realized AI adoption should occur disproportionately through
the extension of contiguous AI chains rather than through scattered, isolated task substitutions. If
AI execution were independent across steps, then conditional on AI exposure, increases in execu-
tion would primarily appear as isolated events and would not substantially reduce fragmentation.
The strong negative relationship observed between execution-based EFI and AI execution therefore
indicates that AI adoption follows the clustered, chain-based pattern implied by the model. In
this sense, the execution-based EFI measures function as a falsification-style check on the model’s
underlying mechanism rather than as a separate test of its predictions.

Taken together, the evidence from both exposure-based (ex-ante) and execution-based (ex-post)
empirical fragmentation measures points to a common pattern. Occupations with greater AI expo-
sure exhibit higher levels of realized AI execution, but the extent to which exposure translates into
execution depends systematically on how AI-able steps are organized within the workflow. When
AI-able steps are more clustered, realized AI execution is higher and occurs through contiguous
chains rather than as isolated step substitutions.

7.3 Prediction #3: Adjacency to AI Tasks Increases Likelihood of AI Execution

The final prediction of the model that we test is that when the same step appears in two occupa-
tions, in one sitting between strong AI performers and in the other located between manual ones,
it is more likely to be executed by AI in the first occupation. Intuitively, when a step is surrounded

24The reduction is weak because adding an isolated AI-executed task does not change fragmentation, whereas
adding a task adjacent to an existing AI-executed task extends an AI chain and reduces fragmentation.
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by AI-executed steps, there are local gains from grouping it with its neighbors as part of a long
AI chain that are absent when the step is situated next to manual steps. For example, step X is
more likely to be executed by AI in the first occupation below than in the second because, all else
equal, the local gains from forming an AI chain containing all three steps are larger than those
from performing only step X via AI in the second occupation:

Occupation 1: · · · · · · AI X AI · · · · · ·

Occupation 2: · · · · · · Manual X Manual · · · · · ·

Testing this prediction requires identifying steps that appear across different occupations. Be-
cause O*NET tasks are occupation-specific, no single task is shared across occupations in the data.
To address this, we rely on O*NET’s broader categories of Detailed Work Activities (DWAs), which
group conceptually similar tasks across occupations. In total, the roughly 18,000 O*NET tasks are
mapped into 2,067 DWAs.

In our main sample, we drop tasks that are mapped to multiple DWAs.25 We further restrict
attention to DWAs that contain tasks appearing in more than one occupation. Together, these
restrictions reduce the sample to 10,708 tasks spread across 1,748 DWAs. We treat the remaining
tasks as instances of the same step appearing across different occupations and estimate the following
regression:

Pr(is ait = 1 | Xt) = Λ
(
β0 + β1 prev2 is ait + β2 prev is ait + β3 next is ait + β4 next2 is ait + εt

)
,

(22)
where Λ is the logistic CDF and is ait indicates whether step t is executed by AI. The variables
prev2 is ait and prev is ait equal 1 if the step two positions before or immediately before step t
is AI-executed, respectively, and next is ait and next2 is ait are defined analogously for the steps
immediately after and two positions after step t. In the implementation we also control for the step
t’s AI-exposure status and number of steps in the occupation it appears in.

Table 4 reports average marginal effects (AMEs) from estimating equation (22) under a series
of increasingly restrictive specifications. Column (1) presents the baseline specification without
additional controls. In this specification, having a task’s immediate neighbors executed by AI is
associated with a large and statistically significant increase in the probability that the task itself
is AI-executed. More distant neighbors also exhibit positive effects, but their magnitudes are
substantially smaller than those of the immediate neighbors.

Columns (2) and (3) add SOC major group and SOC minor group fixed effects, respectively.
Once we control for occupation families, the estimated effect of immediate neighbors attenuates,
and the coefficients on more distant neighbors become small and statistically insignificant. This
pattern suggests that part of the baseline estimates reflect systematic differences across occupation
families, while the effect of immediate neighbors remains present even within families.

In Column (4), we include DWA fixed effects so that the variation comes from within detailed
work activities, rather than being driven by systematic differences across DWAs that may exhibit
distinct AI-ability characteristics. Under this specification, the effect of immediate neighbors at-

25A little over 20% of tasks are associated with more than one DWA in the O*NET dataset.
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Table 4: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Execution Likelihood

Specification (1) (2) (3) (4) (5) (6)

(t− 2) Task AI 0.07*** 0.01 0.00 -0.01 0.06* -0.01

(0.02) (0.01) (0.01) (0.03) (0.03) (0.03)

(t− 1) Task AI 0.12*** 0.06*** 0.05*** 0.05** 0.13*** 0.05**

(0.02) (0.01) (0.01) (0.02) (0.03) (0.02)

(t+ 1) Task AI 0.12*** 0.06*** 0.05*** 0.04** 0.10*** 0.04**

(0.02) (0.01) (0.01) (0.02) (0.02) (0.02)

(t+ 2) Task AI 0.05*** 0.00 -0.01 0.00 0.04 0.00

(0.02) (0.01) (0.01) (0.02) (0.03) (0.02)

Pseudo R2 0.112 0.173 0.171 0.196 0.030 0.197

Observations 10,708 10,708 9,861 4,096 4,096 4,096

SOC Group FE Major Minor

DWA FE Yes Yes

NumTasks in DWA-Occupation Control Yes Yes

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Notes: This table reports average marginal effects from estimating regression (22). The dependent variable in all
specifications is an indicator for whether task t is AI-executed (is ait). The sample is restricted to similar tasks
across occupations, identified as tasks belonging to the same DWA in the O*NET dataset. All specifications control
for the AI exposure status of task t and for the total number of tasks in task t’s occupation. Standard errors are
bootstrapped using B = 200 replications and clustered at the DWA level.

tenuates relative to the baseline, and the influence of more distant neighbors effectively disappears.
This indicates that a meaningful share of the baseline relationship operates at the level of the
DWA, and that once comparisons are restricted to tasks within the same detailed work activity,
the estimated effects are reduced but remain present for immediate neighbors.26

In a non-trivial number of cases, a DWA contains multiple tasks within the same occupation in
the O*NET dataset. While our main sample retains the full set of such tasks, Column (5) controls
for the number of tasks associated with a task’s DWA within the same occupation. This control is
intended to mitigate concerns that tasks belonging to the same DWA and occupation may appear
close together in the workflow and mechanically inflate the estimated impact of neighboring tasks
on a task’s likelihood of AI execution. The resulting estimates closely resemble those from the
baseline, although the effects of more distant neighbors are weaker and less precisely estimated.

Finally, Column (6) augments the last specification by including DWA fixed effects. Under
this most restrictive specification, the estimated pattern mirrors that observed in Columns (2)
through (4), with small positive effects of immediate neighbors and negligible effects of more distant
tasks.

Taken together, the estimates indicate that having a task’s immediate neighbors executed by
AI increases the probability that the task itself is AI-executed, whereas the mode of execution of
more distant neighbors has little to no effect, especially after controlling for a range of relevant

26We do not include simultaneous SOC occupation family and DWA fixed effects as doing so severely restricts the
sample and we lack enough variation required for properly estimating the coefficients in those specifications.
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factors. This finding aligns with the relatively short AI chains observed in the data. Recall that
the average AI chain length in our sample is only 1.45, implying that tasks two positions away
rarely belong to the same chain as the focal task. Perhaps as AI quality improves longer chains
may become more prevalent, in which case the execution status of more distant neighbors could
begin to meaningfully influence a task’s likelihood of AI execution as well.

Because we do not have a benchmark for what constitutes a large versus small effect in our
context, interpreting the magnitudes in vacuum is difficult. To better understand these results
and to check whether the observed patterns could have arisen by chance, we conduct a robustness
exercise in which we repeat (22) on 1,000 placebo datasets constructed by randomizing the positions
of tasks within occupations. The results are shown in Figure 10. In each graph, the red dashed
line marks the AME estimated from the actual data, as reported in Table 4, along with the 90%
confidence interval around it. The blue bars in Panel (A) show the histogram of AMEs obtained
from reshuffled datasets estimated using the baseline regression specification. Panels (B), (C), and
(D) report the corresponding histograms when SOC major group, SOC minor group, and DWA
fixed effects are included, respectively.

Several patterns emerge from the graphs. First, across all four neighbors within each specifi-
cation, the randomized distributions are centered at similar means and have similar shapes. This
indicates that if position of tasks in the workflow had no effect on AI execution outcomes, each
neighbor’s mode of execution would contribute similarly, on average, to the AI execution probability
of the task in question.

Second, in all panels, the observed marginal effects for immediate neighbors (middle columns)
in the actual data lie to the right of the randomized distributions, while the actual effects for
farther neighbors (side columns) tend to lie to the left. This suggests that immediate neighbors
exert a stronger positive influence on a task’s AI execution likelihood than would be expected under
random assignment, while farther neighbors exert less influence once the contribution of immediate
neighbors is accounted for.

Third, consistent with the results in Table 4, once SOC occupation group and DWA fixed
effects are included, the estimated effects of more distant neighbors collapse to essentially zero in
Panels (B) through (D), whereas the effects of immediate neighbors remain positive and distinct
from the placebo distributions. This is consistent with the interpretation that due to short length
of AI chains farther neighbors do not contribute to the execution mode of the task in the middle.

Next, we conduct two robustness exercises. The first addresses a concern regarding the selection
of similar tasks across occupations. Although DWAs are intended to group conceptually similar
tasks, one might argue that even within a given DWA tasks may still somewhat differ in their
objectives, execution nature, or required skills. To alleviate concerns about the set of DWA tasks not
sharing similar profiles, we repeat the analysis using a more restrictive definition of task similarity
within DWAs. Specifically, for each DWA, we ask GPT-5-mini to select the subset of tasks that are
most similar in terms of skill requirements and execution complexity.27 This procedure yields, for
each DWA, a set of highly comparable tasks that appear across different occupational contexts.28 In
this robustness test we treat these tasks as instances of the same underlying step appearing across
occupations and re-estimate regression (22) on this restricted sample. The resulting estimates,
reported in Appendix Table C.6 and Appendix Figure D.6, closely mirror the baseline patterns

27The prompt used to identify similar DWA tasks is provided in Appendix E.
28Panel (A) of Appendix Table C.3 presents example DWAs and their associated O*NET tasks across occupations,

along with execution modes. Panel (B) reports the subset of tasks retained after applying the similarity filter.
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Figure 10: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Execution Likelihood

Panel (A): No Fixed Effects

Panel (B): SOC Major Group Fixed Effects

Panel (C): SOC Minor Group Fixed Effects

Panel (D): Detailed Work Activity Fixed Effects

Notes: These graphs show that, among similar tasks appearing in multiple occupations, those whose immediate
neighbors are AI-executed exhibit higher probabilities of being executed by AI, while more distant neighbors have
little to no effect on a task’s AI execution likelihood. The red dashed line in each graph indicates the observed
average marginal effect of the corresponding variable in the original dataset reported in Table 4. The red shaded area
marks the 90% confidence interval around the observed point estimates in the main sample. The histograms plot
the distribution of average marginal effects across 1,000 randomized reshuffles of task positions within occupations.
Panel (A) reports results from specification (22), while Panels (B), (C), and (D) augment the baseline specification
with SOC major group, SOC minor group, and DWA fixed effects, respectively.
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given above in both sign and magnitude.
The second robustness exercise examines a stricter notion of AI execution that is directly implied

by our model, under which automated steps can only precede other AI-executed steps, whether au-
tomated or augmented. Accordingly, we repeat the analysis focusing specifically on AI automation
rather than AI execution more broadly. In this scenario, the dependent variable in equation (22)
is an indicator for whether step t is AI-automated (is automatedt) instead of AI-executed (is ait).
The corresponding estimates for the main sample are reported in Appendix Table C.7 and Ap-
pendix Figure D.7, while results for the GPT-filtered sample are reported in Appendix Table C.8
and Appendix Figure D.8.29 Under this stricter specification, the estimated effects are smaller in
magnitude and often statistically insignificant, reflecting the more limited prevalence of AI automa-
tion in the data. Nevertheless, the signs and qualitative patterns of the estimates remain consistent
with those obtained for AI execution.

8 Conclusion

This paper develops a task-based framework for understanding how advances in AI reshape au-
tomation, the division of labor, firms’ organizational structure, and production more generally. By
modeling production as a sequence of steps that can be aggregated into tasks and then into jobs,
we show how firms optimally allocate work between humans and AI (whether in augmented or fully
automated form) when doing so requires trading off gains from specialization against coordination
frictions. A central feature of the model is the possibility of AI chains, in which multiple steps are
executed by AI and only the final output is verified by a human. Chaining can overturn step-level
comparative advantage logic in factor assignment and non-linearly amplify the effects of marginal
improvements in AI quality.

We characterize short-run AI deployment decisions when job boundaries, and therefore the set
of tasks assigned to each worker, are fixed, and the long-run joint optimization of job design and AI
deployment strategy. We show that improvements in AI quality can induce discrete reorganizations
of work. A key implication is that marginal increases in AI quality may generate little or no
cost savings until a threshold is crossed, after which the optimal production structure changes
discontinuously. This helps explain why firms invest so heavily in AI capabilities even when short
run returns appear limited, and is consistent with the J-curve pattern of technology adoption
(Brynjolfsson et al., 2021) in which early adoption raises costs before the anticipated gains from
reorganization are realized.

We also show how the production functions derived from firm-level cost minimization can be
mapped into a CES production function at the aggregate level when firms differ in how they
deploy a common, general-purpose AI technology. Our framework therefore also allows studying
the aggregate productivity and labor demand implications of improvements in AI quality through
a micro-foundation for how individual firms respond to such advances.

We complement the theoretical analysis with empirical evidence consistent with three core
mechanisms implied by the model. Using a task-level dataset of AI exposure and AI execution
outcomes, we find that AI-executed steps tend to appear in contiguous AI chains, that occupa-
tions with more fragmented AI-exposed steps in their workflow exhibit lower realized AI execution

29Because relatively few tasks in the data are AI-automated, and because we further restrict attention to highly
similar tasks across occupations, we retain tasks associated with multiple DWAs in the original O*NET dataset and
randomly assign each such task to one of its associated DWAs for these exercises.
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conditional on exposure levels, and that when comparable steps appear across occupations those
adjacent to AI-executed neighbors are significantly more likely to be executed by AI themselves.
These patterns align with the central economic forces highlighted by the model: the importance
of positional relationships among steps, the role of AI-able step dispersion in shaping execution
outcomes, and the local complementarities created by AI chains.
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A Technical Details – Fragmentation Index

In this Appendix we prove Proposition 5, which relates the cost of the optimal short-term AI
deployment strategy for a fixed job to the fragmentation index of that job. Intuitively, we expect
a production process in which automatable tasks are clustered together will benefit more from
AI deployment than one where steps with high and low levels of automation susceptibility are
interspersed. This is due to the potential benefits from AI chains.

First recall the definition of fragmentation index for a given step sequence S = (s1, . . . , sm).
As a reminder, we assume for Proposition 5 that tAi = 1 for all si. Consider a random process in
which each step si succeeds independently with probability qi; any step that does not succeed is
said to fail. Write F for the set of steps that fail, and C = {C1, . . . , Ck} for the random variable
representing the collection of maximal connected components of non-failed steps. The weight of
each Cj ∈ C is defined to be ω(Cj) = min{1,

∑
si∈Cj

tMi }. That is, each Cj has weight 1 unless the

sum of the manual time costs for each of its steps is less than 1 (due to our assumption that AI
management costs are normalized to 1).

We now introduce some notation: for each si, write t∗i = min
{
tMi ,

tAi
qi

}
. That is, t∗i is the

minimum cost to implement step si individually (whether manually or through AI augmentation).
Given a realization of C and F , we define the realized fragmentation to be∑

si∈F
t∗i +

∑
Cj∈C

ω(Cj).

The fragmentation index is defined to be the expected value of the realized fragmentation.
We now fix the sequence S = (s1, . . . , sm), write FI for the fragmentation index of S, and let

OPT be the cost of the optimal (i.e., time-minimizing) task structure for those steps.
We begin by showing that FI is not much larger than OPT .

Proposition 6. FI ≤ 5
4OPT .

Proof. Fix an arbitrary task sequence T = (T1, . . . , Tn). Partition this into two sets of tasks: TM
containing all (singleton) tasks that are completed manually, and TA containing all other tasks
(consisting of AI-augmented singletons and AI chains). We first claim that

FI ≤
∑

Tj∈TA

1 +
∑
si∈Tj

(1− αdi)(1 + t∗i )

+
∑

(si)∈TM

tMi .

To see why, first note that for any human-executed task (si) ∈ TM , either the task fails in the
realization of F (in which case it contributes t∗i ≤ tMi to FI), or it succeeds (in which case it appears
in some connected component Cj , contributing at most tMi to the component’s weight ω(Cj)).

Next consider the AI-assisted tasks. For any Tj ∈ TA, consider the set of steps in Tj that fail
in any given realization of F . If no steps in Tj fail, then Tj collectively contributes at most 1 to
the realized fragmentation (since all si ∈ Tj lie in the same connected component of non-failed
tasks). Otherwise, each failed task si ∈ Tj contributes t∗i to the realized fragmentation (for itself,
recalling that t∗i is the minimal cost of executing si on its own) plus an additional value of at most
1 for the weight of a potential new connected component of non-failed tasks. As each task si ∈ Tj

fails independently with probability (1 − αdi), we get that the contribution of tasks in Tj to the
fragmentation index is at most 1 +

∑
si∈Tj

(1− αdi)(1 + t∗i ) as claimed.

50



On the other hand, recall that if we take T to be the cost-minimizing task sequence, then

OPT =
∑

Tj∈TA

α−d(Tj) +
∑

(si)∈TM

tMi

by definition, where we write d(Tj) =
∑

si∈Tj
di for the total difficulty of steps in task Tj .

Comparing our expression for OPT with our bound on FI, we see that each task in TM con-
tributes the same amount to each, whereas each Tj ∈ TA contributes 1+

∑
si∈Tj

(1−αdi)(1+t∗i ) to the

former and α−d(Tj) to the latter. We will show that, for each Tj ∈ TA, 1+
∑

si∈Tj
(1−αdi)(1+ t∗i ) ≤

5
4α

−d(Tj), which will complete the proof.
First, since t∗i ≤ α−di for each si ∈ S, we have 1 +

∑
si∈Tj

(1 − αdi)(1 + t∗i ) ≤ 1 +
∑

si∈Tj
(1 −

αdi)(1 + α−di).
Next note that for any x, y ∈ [0, 1], (1 − xy)(1 + 1

xy ) ≥ (1 − x)(1 + 1
x) + (1 − y)(1 + 1

y ). (This
can be checked by expanding and taking derivatives.) Repeatedly applying this fact, we get that
1+

∑
si∈Tj

(1−αdi)(1+α−di) ≤ 1+(1−αd(Tj))(1+α−d(Tj)) = 1+α−d(Tj)−αd(Tj) for any Tj ∈ TA.
The ratio between this expression and α−d(Tj) is maximized at α−d(Tj) = 1/2, achieving a value of
5/4 as claimed.

Note that this bound of 5/4 is tight. Suppose we have 3 steps in S: the first and last always
succeed, and the second succeeds with probability 1/2 and has a manual cost of 2. Then the optimal
policy automates all three together for an expected cost of 2, whereas the fragmentation index is
(1/2)× 1 + (1/2)× (1 + 2 + 1) = 5/2.

We next argue that F is not much smaller than OPT . We begin with an analysis under the
assumption that tMi ≥ 1 for all si ∈ S. That is, for each step si, completing the step manually is at
least as costly as managing an AI tool to complete the step in a single attempt (with guaranteed
success).

Proposition 7. Suppose tMi ≥ 1 for all si ∈ S. Then FI ≥ 1
4OPT .

Proof. Consider the following task sequence. Beginning with the first step s1, consider the maximal
contiguous sequence of steps T whose success probability αd(T ) is greater than or equal to 1/2. If
that set is empty (i.e., the first step has success probability strictly less than 1/2) then the first
step is set to be completed individually, either manually or augmented, whichever is cheaper. In
this case, we’ll say the resulting singleton task is completed individually. Otherwise, the sequence
T = (s1, . . . , sℓ) (which could still be a singleton task) is added to the task sequence as an AI
chain; we call this a non-individual task. This process is then repeated beginning with the next
step (which is s2 in the former case, or sℓ+1 in the latter case), until all steps have been added to
a task. Call the resulting task sequence T .

Let ALG denote the cost of the task sequence T . Note that we must have ALG ≥ OPT . We
will argue that FI ≥ ALG/4, which will prove the claim.

We first define some notation. Write TI for the set of individual tasks in T and TNI for the
set of non-individual tasks. Note that αdi < 1/2 for all (si) ∈ TI , by construction. Note also
that TM ⊆ TI (recalling that TM is the set of all singleton tasks executed manually), and this
containment may be strict if TI contains singleton tasks that are augmented. We emphasize that
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TNI may still include singleton tasks, but any singleton task (si) ∈ TNI must have the property
that αdi ≥ 1/2.

If the final task sm from S is contained in some Tj ∈ TNI , we say that Tj is the terminal task.
All other tasks in TNI are non-terminal tasks. Note that if the final step is a singleton task in TI
then no task is terminal. For each non-terminal task Tj ∈ TNI , we’ll write T j to denote Tj plus the
first step that follows Tj . For example, if Tj = (si, . . . , sℓ), then T j = (si, . . . , sℓ, sℓ+1). The set TNI

then has the property that for each task Tj ∈ TNI we have αd(Tj) ≥ 1/2, and for each non-terminal

Tj ∈ TNI we have α(d(T j)) < 1/2.

We are now ready to relate FI and ALG. Let k = |TNI | be the number of non-individual tasks.
Note first that

ALG =
∑

Tj∈TNI

α−d(Tj) +
∑

(si)∈TI

t∗i ≤ 2k +
∑

(si)∈TI

t∗i .

This is because αd(Tj) ≥ 1/2 for each Tj ∈ TNI , and hence α−d(Tj) ≤ 2.

Next we bound FI. Note that the assumption tMi ≥ 1 implies that, in any realization of the
connected components of non-failed steps C = (C1, . . . , Cℓ), ω(Cj) = 1 for all j. This implies
that the realized fragmentation is equal to 1 plus, for each si ∈ F (i.e., each step si that fails), a
contribution of t∗i plus an additional 1 in the event that i > 1 and the task immediately preceding
si did not fail. (This additional cost of 1 accounts for creating a new connected component of
non-failed steps ending with si−1.)

We claim that FI ≥ k/2 + 1
2

∑
(si)∈TI t

∗
i . We will show this by charging the realized fragmen-

tation to tasks in TNI and TI , so that each Tj ∈ TNI is charged at least 1 with probability at least
1/2, and each (si) ∈ TI is charged at least t∗i with probability at least 1/2.

To see this, let Ej denote the event that some step in T j fails, for each non-terminal Tj ∈ TNI .

Note that Ej occurs with probability at least 1/2, since αd(T j) < 1/2. Also, if Ej occurs, then
either a step si ∈ Tj fails, or no step in Tj fails but the step immediately following Tj does. In
the former case, we will charge the t∗i ≥ 1 contribution of si’s failure to Tj . In the latter case,
it must be that the step immediately preceding the failed task did not fail; so we will charge the
additional contribution of 1 from si’s failure (as described above) to Tj . Additionally, if there is
a terminal Tj in TNI , then we charge the baseline 1 from the calculation of FI to that terminal
Tj . Aggregating over all these cases, we have that at least 1 is charged to each set Tj ∈ TNI with
probability at least 1/2. Finally, for each (si) ∈ TI that fails (which occurs with probability at least
1/2, by construction), we charge the t∗i portion of its contribution to task (si). We conclude that
FI ≥ k/2 + 1

2

∑
(si)∈TI t

∗
i as claimed.

But now since FI ≥ k/2+ 1
2

∑
(si)∈TI t

∗
i and ALG ≤ 2k+

∑
(si)∈TI t

∗
i , we conclude FI ≥ ALG/4

as claimed.

Can the approximation factor in Proposition 7 be improved? While we do not have a matching
lower bound of 4, we do know that the approximation factor is at least 2

3(2 +
√
2) ≈ 2.276. Here is

an example. Suppose the problem instance is a sequence of m steps, each with success probability
1/

√
2 and manual cost

√
2. The task sequence described in the proof of Proposition 7 then handles

each task separately, for a total cost of m
√
2. The optimal task sequence must therefore perform at

least this well. The fragmentation index is such that each task contributes
√
2 if it fails, plus 1 if the

preceding task did not fail, for a total contribution of (1−1/
√
2)(

√
2+1(1/

√
2) = 3

2(
√
2−1) ≈ 0.6213.

As m grows large, the ratio between m
√
2 and 1 +m× 0.6213 approaches 2

3(2 +
√
2) ≈ 2.276.

52



We can relax the assumption in Proposition 7 that tMi ≥ 1 for all si, but at the cost of a worse
approximation factor.

Proposition 8. For general tMi (i.e., allowing tMi < 1 for some steps si), FI ≥ 1
8OPT .

Proof. The argument follows the proof of Proposition 7, with the following changes.
First we make a slight change in the definition of the task sequence T that defines ALG. If a

constructed task Tj has the property that
∑

si∈Tj
tMi < 1 (which implies it is cheaper to run all

steps of Tj manually than as an AI chain that is guaranteed to succeed), we switch to running the
tasks of Tj manually in the task sequence. In our analysis, we still consider Tj to be a set in TNI ;
but its cost is taken to be

∑
si∈Tj

tMi .
This modification changes our upper bound on the total cost of ALG to the following:

ALG ≤ 2
∑

Tj∈TNI

min

1,
∑
si∈Tj

tMi

+
∑

(si)∈TI

t∗i .

Then, to bound FI, we claim that

FI ≥ 1

4

∑
Tj∈TNI

min

1,
∑
si∈Tj

tMi

+
1

2

∑
(si)∈TI

t∗i

which would prove the claim.
To see why this bound on FI holds, we employ a charging argument as before. Recall that

for each non-terminal Tj ∈ TNI , the event Ej occurs with probability at least 1/2. When it does,
we charge to Tj the contribution t∗i to FI from any si ∈ F that lies in Tj . Furthermore, when Ej

occurs, for each connected component Cℓ that intersects Tj we additionally charge the contribution
ω(Cℓ) from FI to Tj . Crucially, the contribution from each Cℓ can be charged to at most two
different tasks Tj in this way: once for the leftmost Tj that it intersects, and once for the rightmost
Tj that it intersects. (The reason is that if some Tj is a subset of Cℓ, then by definition no step of
Tj fails and hence Ej did not occur. So this charging can only occur for a task Tj that intersects
Cℓ but is not a subset of Cℓ, of which there are at most two.) Moreover, this charging to Tj adds

up to a total value of at least min
{
1,
∑

si∈Tj
tMi

}
. Since the charging occurs with probability

1/2 for each Tj ∈ TNI , and we are at most double-counting each ω(Cℓ), we conclude that the
expected sum of all ω(Cℓ), plus t

∗
i for all failed tasks si that lie in some Tj ∈ TNI , is at least 1/4 of∑

Tj∈TNI
min

{
1,
∑

si∈Tj
tMi

}
.

The charging for (si) ∈ TI remains unchanged: the value t∗i is charged in the event that step si
fails, which occurs with probability at least 1/2.

Taken together, we obtain our desired 8 approximation.

We suspect the factor of 8 in Proposition 8 is not tight. But, as we now show, the factor is
strictly greater than the factor 4 from Proposition 7, so the assumption that tMi ≥ 1 for all si is
necessary for Proposition 7 to hold.

Consider a step sequence S that alternates between (a) steps of manual cost 0 and success
probability 1/

√
2 − ϵ where ϵ is vanishingly small, and (b) steps of manual cost 1 and success

probability 1. Suppose there are K > 1 such pairs. The task sequence described in the proof of
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Proposition 8 above groups the steps into pairs of two-step tasks, for a total cost of K
√
2 (ignoring

ϵ). The fragmentation index is 1 plus 1 for each task that fails, which is 1 +K(1 − 1/
√
2) (again

ignoring the impact of ϵ). As K grows large, the ratio tends to 2(
√
2 + 1) which is strictly greater

than 4.
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B Technical Details – Derivation of Effective AI Quality Hetero-
geneity Distribution

In this Appendix we describe how to obtain the analytical formula for distribution of heterogeneity
ϕ(ᾱ) expressed in (20) by extending the method of Levhari (1968).

Define u = (wA τA)/(1− wM τM ) and rewrite equation (19) as:(∫ 1

u
ϕ(ᾱ) dᾱ

)ρ

= θA

(
τA

∫ 1

u

ϕ(ᾱ)

ᾱ
dᾱ

)ρ

+ θM

(
τM

∫ 1

u
ϕ(ᾱ) dᾱ

)ρ

+ (1− θA − θM ) . (23)

Our goal is to solve for ϕ(ᾱ) in the equation above as a function of θM , θH , ρ. Define:

Γ(u) =

∫ 1

u
ϕ(ᾱ) dᾱ, (24)

and

Ψ(u) =

∫ 1

u

ϕ(ᾱ)

ᾱ
dᾱ. (25)

Note that Γ
′
(u) = −ϕ(u) and Ψ

′
(u) = −ϕ(u)/u. Rewrite equation (23) as:

Γρ(u) = θA τρAΨρ(u) + θM τρM Γρ(u) + (1− θA − θM ).

Rearranging terms, we obtain:(
1− θM τρM

)
Γρ(u) = θA τρAΨρ(u) + (1− θA − θM ). (26)

Differentiating equation (26) with respect to u yields:(
1− θM τρM

)
Γρ−1(u) = θA τρAΨρ−1(u)u−1.

Solving for Ψρ−1(u) as a function of u and Γρ−1(u) we get:

Ψρ−1(u) =

(
1− θM τρM

)
θA τρA

Γρ−1(u)u.

Finally, express Ψ(u) in terms of Γ(u):

Ψ(u) =
(
1− θM τρM

) 1
ρ−1
(
θA τρA

) 1
1−ρ u

1
ρ−1 Γ(u). (27)

Substituting Ψ(u) from equation (27) into equation (26), we have:(
1− θM τρM

)
Γρ(u) =

(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ u

ρ
ρ−1 Γρ(u) + (1− θA − θM ) .

Rearranging terms to solve for Γ(u), we get:

Γ(u) = (1− θA − θM )
1
ρ

[
1− θM τρM −

(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ u

ρ
ρ−1

]− 1
ρ
.
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Recall that Γ′(u) = −ϕ(u). Differentiating Γ(u), we obtain:

Γ′(u) =
∂

∂u

[
(1− θA − θM )

1
ρ

[
1− θM τρM −

(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ u

ρ
ρ−1

]− 1
ρ

]

=
(1− θA − θM )

1
ρ
(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ

ρ− 1
u

1
ρ−1

[
1− θM τρM −

(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ u

ρ
ρ−1

]− 1+ρ
ρ

.

Thus, we have:

ϕ(ᾱ) =
(1− θA − θM )

1
ρ
(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ

1− ρ
(ᾱ)

1
ρ−1

[
1− θM τρM −

(
1− θM τρM

) ρ
ρ−1
(
θA τρA

) 1
1−ρ (ᾱ)

ρ
ρ−1

]− 1+ρ
ρ

,

(28)
which is the formula provided in (20) in the main text.
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C Appendix Tables

Table C.1: Role of AI-able Task Fragmentation in Determining AI Execution Outcomes (Using
Execution-Based Empirical Fragmentation Measures)

EFI Definition 3 EFI Definition 4

(1) (2) (3) (4) (5) (6)

AI Exposure 0.43*** 0.20*** 0.15*** 0.26*** 0.13*** 0.11***

(0.03) (0.04) (0.05) (0.02) (0.03) (0.03)

Empirical Fragmentation Index -2.58*** -1.97*** -1.68*** -1.48*** -1.29*** -1.24***

(0.12) (0.15) (0.17) (0.05) (0.05) (0.06)

R-squared 0.65 0.74 0.80 0.84 0.87 0.90

R-squared Adj. 0.65 0.74 0.77 0.84 0.87 0.88

N 872 872 872 872 872 872

SOC Group Fixed Effects Major Minor Major Minor

Clustered standard errors in parentheses. ∗ : p < 0.1, ∗∗ : p < 0.05, ∗∗∗ : p < 0.01.

Notes: This table shows that occupation-level AI execution outcomes depend not only on the overall exposure
of tasks to AI, but also on where AI-able steps are situated within the production sequence. The table reports
results from estimating regression (21). The dependent variable in all specifications is the share of steps executed
by AI in an occupation (ai execution). The variable “AI Exposure” denotes the share of AI-exposed (E1) steps
in the occupation, while the “Empirical Fragmentation Index” captures how dispersed AI-able steps are across the
occupation’s workflow. Definition 3 measures fragmentation based on realized AI chains per the model’s definition
(given in Definition 4), whereas Definition 4 expands the definition of AI chains by treating both automated and
augmented tasks contributing equally to the formation of AI chains in measuring task fragmentation.
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Table C.2: Example O*NET Tasks Associated with Claude Conversations, and Calculated Augmentation vs. Automation Outcomes

O*NET Task
Share of Claude Conversations (%)

Label
Validation Task Iteration Learning Directive Feedback Loop Filtered Augmentation Automation

Provide road information to assist motorists. 0.00 11.47 44.39 33.42 5.74 4.99 55.86 39.15 Augmentation

Calculate costs of orders, and charge or forward invoices
to appropriate accounts.

0.00 0.00 0.00 68.00 0.00 32.00 0.00 68.00 Automation

Process data for analysis, using computers. 4.23 18.60 31.40 25.79 16.38 3.59 54.23 42.18 Augmentation

Adapt text to accommodate musical requirements of
composers and singers.

0.00 40.00 0.00 58.26 0.00 1.74 40.00 58.26 Automation

Provide system design and integration
recommendations.

2.13 29.75 39.98 21.23 5.80 1.11 71.87 27.02 Augmentation

Communicate traffic and crossing rules and other
information to students and adults.

0.00 0.00 0.00 65.52 0.00 34.48 0.00 65.52 Automation

Prepare, manipulate, and manage extensive databases. 0.00 25.89 22.34 23.40 24.47 3.90 48.23 47.87 Augmentation

Prepare, administer, and grade tests and assignments to
evaluate students’ progress.

7.64 20.94 7.39 58.13 3.94 1.97 35.96 62.07 Automation

Conduct statistical analyses to quantify risk using
statistical analysis software or econometric models.

0.00 25.23 31.53 17.12 18.92 7.21 56.76 36.04 Augmentation

Assemble, typeset, scan and produce digital
camera-ready art or film negatives and printer’s proofs.

0.00 21.88 0.00 77.34 0.00 0.78 21.88 77.34 Automation

Conduct searches to find needed information, using such
sources as the internet.

1.31 5.53 58.30 23.14 3.57 8.15 65.14 26.71 Augmentation

Compile data and create statistical reports on library
usage.

0.00 0.00 0.00 64.86 0.00 35.14 0.00 64.86 Automation

Create custom illustrations or other graphic elements. 0.00 48.17 3.17 43.82 2.74 2.10 51.34 46.56 Augmentation

Confer with clients to obtain and provide information
when claims are made on a policy.

0.00 0.00 45.45 0.00 0.00 54.55 45.45 0.00 Augmentation

Notes: Augmentation percentage is the sum of Validation, Task Iteration, and Learning types of conversation whereas Automation percentage is the sum
of Directive and Feedback Loop types of conversation. Whichever mode between Augmentation and Automation has a higher share is selected as the
task’s mode of AI execution, ignoring the share Filtered.
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Table C.3: Example DWAs with Tasks in Multiple Occupations and the Tasks Surviving the “Finding Similar Tasks” Procedure

Panel (A)

O*NET DWA Title O*NET Task Title O*NET Occupation Title Execution Label

Analyze operational or research data.

Analyze or manipulate bioinformatics data using software packages, statistical applica-
tions, or data mining techniques.

Bioinformatics Technicians
Augmentation

Conduct quality analyses of data inputs and resulting analyses or predictions. Augmentation

Analyze research data to determine its significance, using computers. Astronomers Augmentation

Collect and analyze data, such as studying old records, tallying the number of outpatients
entering each day or week, or participating in federal, state, or local population surveys
as a Census Enumerator.

Interviewers, Except Eligibility and Loan Manual

Analyze data to determine answers to questions from customers or members of the public. Receptionists and Information Clerks Augmentation

Compute and analyze data, using statistical formulas and computers or calculators. Statistical Assistants Augmentation

Prepare research or technical reports on environmental issues.

Write reports or articles for Web sites or newsletters related to environmental engineering
issues.

Environmental Engineers Manual

Prepare technical and research reports, such as environmental impact reports, and com-
municate the results to individuals in industry, government, or the general public.

Biologists Manual

Prepare scientific atmospheric or climate reports, articles, or texts. Atmospheric and Space Scientists Automation

Prepare charts or graphs from data samples, providing summary information on the envi-
ronmental relevance of the data.

Environmental Scientists and Specialists, Including Health Augmentation

Write reports or academic papers to communicate findings of climate-related studies.
Climate Change Policy Analysts

Manual

Prepare study reports, memoranda, briefs, testimonies, or other written materials to in-
form government or environmental groups on environmental issues, such as climate change.

Manual

Prepare technical and research reports, such as environmental impact reports, and com-
municate the results to individuals in industry, government, or the general public.

Industrial Ecologists Manual

Produce environmental documents, such as environmental assessments or environmental
impact statements.

Transportation Planners Manual

Document events or evidence using photographic or audiovisual equipment.

Take photographs and motion pictures for use in lectures and publications and to develop
displays.

Park Naturalists Manual

Create data records for use in describing and analyzing social patterns and processes,
using photography, videography, and audio recordings.

Anthropologists and Archeologists Automation

Create photographic recordings of information, using equipment. Geological Technicians, Except Hydrologic Technicians Automation

Use photographic or video equipment to document evidence or crime scenes. Forensic Science Technicians Manual

Panel (B)

O*NET DWA Title O*NET Task Title O*NET Occupation Title Execution Label

Analyze operational or research data.

Analyze or manipulate bioinformatics data using software packages, statistical applica-
tions, or data mining techniques.

Bioinformatics Technicians Augmentation

Analyze research data to determine its significance, using computers. Astronomers Augmentation

Compute and analyze data, using statistical formulas and computers or calculators. Statistical Assistants Augmentation

Prepare research or technical reports on environmental issues.

Prepare technical and research reports, such as environmental impact reports, and com-
municate the results to individuals in industry, government, or the general public.

Biologists Manual

Prepare scientific atmospheric or climate reports, articles, or texts. Atmospheric and Space Scientists Automation

Prepare charts or graphs from data samples, providing summary information on the envi-
ronmental relevance of the data.

Environmental Scientists and Specialists, Including Health Augmentation

Prepare study reports, memoranda, briefs, testimonies, or other written materials to in-
form government or environmental groups on environmental issues, such as climate change.

Climate Change Policy Analysts Manual

Prepare technical and research reports, such as environmental impact reports, and com-
municate the results to individuals in industry, government, or the general public.

Industrial Ecologists Manual

Produce environmental documents, such as environmental assessments or environmental
impact statements.

Transportation Planners Manual

Document events or evidence using photographic or audiovisual equipment.

Take photographs and motion pictures for use in lectures and publications and to develop
displays.

Park Naturalists Manual

Create data records for use in describing and analyzing social patterns and processes,
using photography, videography, and audio recordings.

Anthropologists and Archeologists Automation

Create photographic recordings of information, using equipment. Geological Technicians, Except Hydrologic Technicians Automation

Notes: Panel (A) shows three example detailed work activities (DWAs) and tasks associated with them in the O*NET dataset. Entries highlighted with
a red font are those that are dropped in the “finding similar tasks” procedure described in text. Panel (B) shows the set of tasks for DWAs of Panel (A)
that successfully survive the “finding similar tasks” procedure.
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Table C.6: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Execution Likelihood
(GPT-filtered Sample)

Specification (1) (2) (3) (4) (5) (6)

(t− 2) Task AI 0.04 0.01 0.01 0.04 0.04 0.04

(0.03) (0.02) (0.02) (0.03) (0.04) (0.03)

(t− 1) Task AI 0.11*** 0.07** 0.06** 0.06** 0.10*** 0.06**

(0.04) (0.03) (0.02) (0.03) (0.04) (0.03)

(t+ 1) Task AI 0.11*** 0.08*** 0.07*** 0.09*** 0.09*** 0.09***

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

(t+ 2) Task AI 0.01 -0.02 -0.02 -0.00 0.00 -0.00

(0.03) (0.02) (0.02) (0.03) (0.04) (0.03)

Pseudo R2 0.031 0.055 0.065 0.198 0.020 0.198

Observations 3,689 3,689 3,567 2,544 2,544 2,544

SOC Group FE Major Minor

DWA FE Yes Yes

NumTasks in DWA-Occupation Control Yes Yes

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Notes: This table reports average marginal effects from estimating regression (22). The dependent variable in all
specifications is an indicator for whether task t is AI-executed (is ait). The sample is restricted to similar tasks across
occupations, identified by GPT-5-mini as tasks belonging to the same DWA with similar execution nature and skill
characteristics. All specifications control for the AI exposure status of task t and for the total number of tasks in
task t’s occupation. Standard errors are bootstrapped using B = 200 replications and clustered at the DWA level.
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Table C.7: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Automation Likelihood

Specification (1) (2) (3) (4) (5) (6)

(t− 2) Task AI 0.02** -0.01 -0.01 -0.01 0.01 -0.01

(0.01) (0.01) (0.01) (0.02) (0.03) (0.02)

(t− 1) Task AI 0.05*** 0.02* 0.01 0.02 0.09** 0.02

(0.02) (0.01) (0.01) (0.03) (0.04) (0.03)

(t+ 1) Task AI 0.05*** 0.02*** 0.02** 0.01 0.09** 0.01

(0.01) (0.01) (0.01) (0.02) (0.03) (0.02)

(t+ 2) Task AI 0.03*** 0.00 -0.00 0.02 0.05* 0.02

(0.01) (0.01) (0.01) (0.02) (0.03) (0.02)

Pseudo R2 0.101 0.192 0.173 0.245 0.033 0.245

Observations 13,786 12,777 10,390 2,815 2,815 2,815

SOC Group FE Major Minor

DWA FE Yes Yes

NumTasks in DWA-Occupation Control Yes Yes

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Notes: This table reports average marginal effects from estimating regression (22) but with dependent variable
(is automatedt) instead of (is ait). The sample is restricted to similar tasks across occupations, identified as tasks
belonging to the same DWA in the O*NET dataset. Tasks that are mapped to multiple DWAs are retained, with
one associated DWA assigned randomly for estimation to preserve sufficient variation in the data. All specifications
control for the AI exposure status of task t and for the total number of tasks in task t’s occupation. Standard errors
are bootstrapped using B = 200 replications and clustered at the DWA level.
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Table C.8: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Automation Likelihood
(GPT-filtered Sample)

Specification (1) (2) (3) (4) (5) (6)

(t− 2) Task AI 0.01 -0.02 -0.02 0.00 0.00 0.00

(0.01) (0.01) (0.01) (0.02) (0.03) (0.02)

(t− 1) Task AI 0.06** 0.02 0.02 0.03 0.11** 0.03

(0.03) (0.01) (0.01) (0.03) (0.05) (0.03)

(t+ 1) Task AI 0.06** 0.03* 0.03 0.02 0.09* 0.02

(0.03) (0.02) (0.02) (0.03) (0.05) (0.03)

(t+ 2) Task AI 0.01 -0.02 -0.02 0.00 0.02 0.01

(0.02) (0.01) (0.01) (0.02) (0.04) (0.02)

Pseudo R2 0.042 0.125 0.118 0.247 0.031 0.247

Observations 5,156 5,077 4,490 1,771 1,771 1,771

SOC Group FE Major Minor

DWA FE Yes Yes

NumTasks in DWA-Occupation Control Yes Yes

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Notes: This table reports average marginal effects from estimating regression (22) but with dependent variable
(is automatedt) instead of (is ait). The sample is restricted to similar tasks across occupations, identified by GPT-
5-mini as tasks belonging to the same DWA with similar execution nature and skill characteristics. Tasks that are
mapped to multiple DWAs are retained, with one associated DWA assigned randomly for estimation to preserve
sufficient variation in the data. All specifications control for the AI exposure status of task t and for the total number
of tasks in task t’s occupation. Standard errors are bootstrapped using B = 200 replications and clustered at the
DWA level.
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D Appendix Figures

Figure D.1: Illustration of the Trade-off between Worker Specialization and Coordination in Task
Assignment

Notes: The blue bounded rectangles indicate tasks. The height of each rectangle corresponds to the task’s skill
requirement (c) and its width to the time requirement (t). The shaded areas represent the wage bills of jobs. In
the left panel, tasks are assigned to two specialized workers but a hand-off cost (the pink rectangle) is introduced
due to coordination frictions between them. In the right panel, tasks are bundled into a single job performed by one
worker, eliminating hand-off costs but requiring a worker skilled enough to perform both tasks and compensated with
a higher per-unit-time wage rate.
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Figure D.2: Task Sequence of Computer Programmers Occupation

Notes: This figure shows the task sequence for an occupation with a high share of its tasks (about two thirds)
executed by AI. The task ordering is generated by GPT-5-mini. The execution labels come from the Anthropic
Economic Index. The O*NET code for this occupation is 15-1251.
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Figure D.3: Task Sequence of Public Relations Specialists Occupation

Notes: This figure shows the task sequence for an occupation with a moderate share of its tasks (about one third)
executed by AI. The task ordering is generated by GPT-5-mini. The execution labels come from the Anthropic
Economic Index. The O*NET code for this occupation is 27-3031.
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Figure D.4: Task Sequence of Electronic Equipment Installers and Repairers, Motor Vehicles

Notes: This figure shows the task sequence for an occupation with none of its tasks executed by AI. The task ordering
is generated by GPT-5-mini. The execution labels come from the Anthropic Economic Index. The O*NET code for
this occupation is 49-2096.
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Figure D.5: Relationships Between Occupational AI Exposure, Empirical Fragmentation, and AI
Execution (Execution-Based Empirical Fragmentation Measure)

(a) Empirical Fragmentation Index vs. AI Exposure (b) AI Execution vs. AI Exposure

Notes: These graphs show how the fragmentation of AI-able tasks within an occupation’s workflow shapes the
conversion of AI-exposed tasks into AI-executed tasks. Each bin represents a single O*NET occupation in both
panels. Panel (a) plots version 4 of the empirical fragmentation index defined in Table C.1 against the share of
AI-exposed tasks, whereas Panel (b) plots the share of realized AI-executed tasks against the share of AI-exposed
tasks. All six highlighted occupations have 23 tasks in their production sequence and share similar occupation-level
exposure to AI: Emergency Management Directors, Law Teachers, and Philosophy and Religion Teachers each have
39% of their tasks exposed to AI, whereas Insurance Claims and Policy Processing Clerks, Social Science Research
Assistants, and Communications Teachers each have 35% of their tasks exposed to AI.
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Figure D.6: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Execution Likelihood
(GPT-filtered Sample)

Panel (A): No Fixed Effects

Panel (B): SOC Major Group Fixed Effects

Panel (C): SOC Minor Group Fixed Effects

Panel (D): Detailed Work Activity Fixed Effects

Notes: These graphs show that, among similar tasks appearing in multiple occupations, those whose immediate
neighbors are AI-executed exhibit higher probabilities of being executed by AI, while more distant neighbors have
little to no effect on a task’s AI execution likelihood. The red dashed line in each graph indicates the observed
average marginal effect of the corresponding variable in the original dataset reported in Appendix Table C.6. The
red shaded area marks the 90% confidence interval around the observed point estimates in the GPT-filtered sample.
The histograms plot the distribution of average marginal effects across 1,000 randomized reshuffles of task positions
within occupations. Panel (A) reports results from specification (22), while Panels (B), (C), and (D) augment the
baseline specification with SOC major group, SOC minor group, and DWA fixed effects, respectively.
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Figure D.7: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Automation Likelihood

Panel (A): No Fixed Effects

Panel (B): SOC Major Group Fixed Effects

Panel (C): SOC Minor Group Fixed Effects

Panel (D): Detailed Work Activity Fixed Effects

Notes: These graphs show that, among similar tasks appearing in multiple occupations, those whose immediate
neighbors are AI-executed exhibit higher probabilities of being automated by AI, while more distant neighbors have
little to no effect on a task’s AI automation likelihood. The red dashed line in each graph indicates the observed
average marginal effect of the corresponding variable in the original dataset reported in Table C.7. The red shaded
area marks the 90% confidence interval around the observed point estimates in the main sample. The histograms plot
the distribution of average marginal effects across 1,000 randomized reshuffles of task positions within occupations.
Panel (A) reports results from specification (22) but with dependent variable (is automatedt) instead of (is ait), while
Panels (B), (C), and (D) augment the baseline specification with SOC major group, SOC minor group, and DWA
fixed effects, respectively.
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Figure D.8: Effect of Neighboring Tasks’ AI Execution Status on Task’s AI Automation Likelihood
(GPT-filtered Sample)

Panel (A): No Fixed Effects

Panel (B): SOC Major Group Fixed Effects

Panel (C): SOC Minor Group Fixed Effects

Panel (D): Detailed Work Activity Fixed Effects

Notes: These graphs show that, among similar tasks appearing in multiple occupations, those whose immediate
neighbors are AI-executed exhibit higher probabilities of being automated by AI, while more distant neighbors have
little to no effect on a task’s AI automation likelihood. The red dashed line in each graph indicates the observed
average marginal effect of the corresponding variable in the original dataset reported in Table C.8. The red shaded
area marks the 90% confidence interval around the observed point estimates in the main sample. The histograms plot
the distribution of average marginal effects across 1,000 randomized reshuffles of task positions within occupations.
Panel (A) reports results from specification (22) but with dependent variable (is automatedt) instead of (is ait), while
Panels (B), (C), and (D) augment the baseline specification with SOC major group, SOC minor group, and DWA
fixed effects, respectively.
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E GPT-5-mini Prompts

This Appendix provides the GPT-5-mini prompts used to generate a task sequence for each occu-
pation (Prompt 1), and for finding similar tasks across occupations for each DWA (Prompt 2).

Prompt #1: GPT-5-mini Prompt for Ordering of Tasks in Occupation

You are an expert in workflow analysis for the occupation: {{ occupation }}.

Below is a list of {{ num_tasks }} tasks that are part of this occupation:

{{ tasks_list }}

Provide the typical sequential order in which these tasks are performed in a

real-world workflow.

Return your answer as a JSON array where each element has:

- "Task Position": the sequence number (1, 2, 3, etc.).

- "Task Title": the exact task text from the list above.

Format: [{"Task Position": 1, "Task Title": "..."},

{"Task Position": 2, "Task Title": "..."},

...]

Only return the JSON array, nothing else.
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Prompt #2: GPT-5-mini Prompt for Finding Similar Tasks in Each DWA

You are an expert in workflow analysis for the detailed work activity:

{{ detailed_work_activity }}.

Below is a list of {{ num_tasks }} task IDs and titles that belong to this

detailed work activity and appear across similar or different occupations

(tasks and occupations are ordered such that the first task belongs to the

first occupation, the second task belongs to the second occupation, etc.).

Tasks IDs: {{ tasks_ids }}

Tasks list: {{ tasks_list }}

Occupations list: {{ occupations_list }}

Occupation Codes list: {{ occupation_codes_list }}

Determine which tasks are similar in nature and in terms of their objectives,

methods, or required skills. There may be more than one task associated with

an occupation. Return only the most relevant task for every occupation.

Only look for tasks that are actually similar. Do not feel obliged to return

all occupations.

Return the task-occupation pairs you determine as similar as a JSON array

where each element has:

- "Task ID": the exact task ID from the list of task IDs above

- "Task Title": the exact task text from the list of tasks above

- "O*NET-SOC Code": the exact occupation code text from the list of occupation

codes above

- "Occupation Title": the exact occupation text from the list of occupations

above

Format: [{"Task ID": 1234, "Task Title": "...",

"O*NET-SOC Code": "...", "Occupation Title": "..."},

{"Task ID": 5678, "Task Title": "...",

"O*NET-SOC Code": "...", "Occupation Title": "..."},

...]

Only return the JSON array, nothing else.
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F Data Appendix – Robustness of Task Orderings to Alternative
GPT Prompts

In this Appendix, we assess whether our results are sensitive to the specific GPT prompt used to
order tasks within occupations. Although alternative prompts can generate different task sequences,
we show that these differences do not exhibit systematic patterns across subsets of occupations,
and that our findings are unlikely to be driven by the particular prompt formulation used for the
main analysis.

We begin by randomly selecting 75 occupations, corresponding to approximately 10% of all
occupations in the full sample. For each occupation, we generate task orderings using 10 alternative
prompts in addition to the baseline prompt. We use the same structure as in Prompt #1 in
Appendix E, but only change the sentence starting with “Provide the typical sequential...” with an
alternative from the list below:

1. Imagine a typical workday for this occupation. As the day unfolds, tasks arise and are completed as
needed. Order the tasks in the sequence they most naturally occur.

2. For each task, consider its inputs and outputs. Order tasks so outputs of earlier tasks plausibly feed
into later tasks. If tasks are parallel, place the more upstream task first.

3. Order tasks to minimize rework, waiting, and unnecessary handoffs. Assume an experienced worker
executing the workflow efficiently.

4. Think about what must ultimately be produced in this occupation and what needs to happen before that.
Use this reasoning to produce a natural forward sequence of tasks.

5. Identify which tasks logically depend on others, then order the tasks in a single sequence consistent
with those dependencies and typical practice.

6. Order tasks according to how information is generated, transformed, and used over the course of the
work.

7. Order tasks based on when mistakes would be most costly, placing tasks that prevent or constrain
downstream errors earlier.

8. Order tasks so that tasks informing important decisions tend to occur before tasks that rely on those
decisions.

9. Order the tasks as an experienced practitioner would intuitively carry them out, without explicitly
planning or formalizing the workflow.

10. Order the tasks to reflect how the work is most commonly carried out in practice, rather than how it
is formally described.

Notice that these prompts are not simple re-wordings of the same instruction. Instead, they
approach the task ordering problem from meaningfully different perspectives, so that, in principle,
the resulting task sequences could differ. Our goal is to quantify how much variation these alter-
native prompt formulations induce in practice, and whether such variation poses a concern for our
purposes.

To measure the degree of overlap between task orderings, we compute pairwise Kendall’s τ
within each occupation across all pairs of prompts.30 This measure ranges from −1 (completely

30Kendall’s τ is a standard rank correlation measure that, roughly speaking, captures the fraction of task pairs
that appear in the same relative order across two ranked lists.

73



reversed orderings) to 1 (identical orderings), with 0 indicating no systematic overlap. Higher values
therefore correspond to greater similarity between task sequences.

Across the sampled occupations and prompt pairs, the average Kendall’s τ is approximately
0.6, with the full distribution shown in Figure F.1. This value indicates that task orderings are not

Figure F.1: Distribution of Kendall’s τ Across GPT Task Orderings

Notes: This figure shows the distribution of mean Kendall’s τ , computed across 11 different prompts within occupa-
tions, for the 10% randomly selected occupations. The average across all occupations is 0.58.

identical across prompts, but that there is a reasonably high degree of overlap given the diversity
of prompt formulations considered.

More importantly for our analyses, we find no evidence that GPT generates systematically
different task orderings for different types of occupations. Specifically, we split occupations based
on whether they fall above or below the median in the full sample (rather than only within the
75 occupations subsample) along three dimensions discussed in Subsection 7.2: the empirical frag-
mentation index (Definition 2), the share of occupation tasks exposed to AI, and the share of tasks
executed by AI.

In all three cases, the mean Kendall’s τ is very similar for above- and below-median occupations,
and both groups are well represented in the subsample. Figures F.2 through F.4 illustrate these
patterns. Each figure plots the mean Kendall’s τ for each of the 75 occupations in a descending
order. On the horizontal axis, the range between the minimum and maximum τ across all prompt
pairs is shown in gray. Blue markers indicate occupations below the median of the corresponding
variable in the full sample, while red markers indicate occupations above the median. The dashed
vertical lines report the mean Kendall’s τ associated with each group of observations. Across all
three figures, the group means are nearly identical.
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In short, GPT-generated task orderings do not appear to differ systematically across occupations
with higher versus lower empirical fragmentation index, share of tasks exposed to AI, or share of
tasks executed by AI. Moreover, even when using substantially different prompt formulations, the
resulting task sequences remain fairly similar overall, though not identical. Taken together, these
results provide evidence that our findings are not driven by systematic biases in how the chosen
prompt might treat particular occupations.
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Figure F.2: Robustness of Task Sequences to GPT Prompts by Empirical Fragmentation Index

Notes: This figure shows that task sequences generated by GPT using 10 alternative prompts do not exhibit systematic
differences across more versus less fragmented occupations. Blue markers indicate occupations below the median
empirical fragmentation index (Definition 2) in the full sample, while red markers indicate occupations above the
median. In the randomly selected subsample, 58% of occupations fall below the median empirical fragmentation
index and 42% fall above it. The mean Kendall’s τ is 0.58 for both groups.

76



Figure F.3: Robustness of Task Sequences to GPT Prompts by Share of AI-exposed Tasks in
Occupation

Notes: This figure shows that task sequences generated by GPT using 10 alternative prompts do not exhibit systematic
differences across more versus less AI-exposed occupations. Blue markers indicate occupations below the median AI
exposure in the full sample, while red markers indicate occupations above the median. In the randomly selected
subsample, 46% of occupations fall below the median AI exposure level and 54% fall above it. The mean Kendall’s
τ is 0.60 for the below-median group and 0.56 for the above-median group.
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Figure F.4: Robustness of Task Sequences to GPT Prompts by Share of AI-executed Tasks in
Occupation

Notes: This figure shows that task sequences generated by GPT using 10 alternative prompts do not exhibit systematic
differences across more versus less AI-executed occupations. Blue markers indicate occupations below the median
AI execution in the full sample, while red markers indicate occupations above the median. In the randomly selected
subsample, 35% of occupations fall below the median AI execution level and 65% fall above it. The mean Kendall’s
τ is 0.58 for both groups.

78


	Introduction
	Related Literature
	Model
	Steps
	Tasks
	Jobs
	Firm's Organizational Structure
	Hand-off Costs and the Limits of Worker Specialization

	Optimization
	Short-Term Optimization: AI Deployment Design
	Warm-up to Long-Term Optimization: Job Design without AI
	Full Long-Term Optimization
	Recursive Formulation of Optimization Problem
	Calculating an Approximately Optimal Solution


	Discussion
	Job-level AI Exposure and the Fragmentation Index
	Impact of AI Deployment on Worker Skill and Specialization
	Non-Linear Impacts of AI Improvements

	Macro-level Production Function
	Within-Firm Aggregation: Leontief to Leontief
	Cross-Firm Aggregation: Leontief to CES

	Empirical Evaluation
	Prediction #1: Tendency to Have Runs of Consecutive AI-executed Tasks
	Prediction #2: Dispersion of AI-able Tasks Affects AI Execution Outcomes
	Prediction #3: Adjacency to AI Tasks Increases Likelihood of AI Execution

	Conclusion
	Technical Details – Fragmentation Index
	Technical Details – Derivation of Effective AI Quality Heterogeneity Distribution
	Appendix Tables
	Appendix Figures
	GPT-5-mini Prompts
	Data Appendix – Robustness of Task Orderings to Alternative GPT Prompts

